

C# Frequency Sampling-Based FIR Filter Design

Binh Quoc Tran

Electrical and Computer Engineering

Virginia Military Institute

Lexington, United States

tranbq23@mail.vmi.edu

Cole Bowyer

Electrical and Computer Engineering

Virginia Military Institute

Lexington, United States

bowyercs25@mail.vmi.edu

James C. Squire

Electrical and Computer Engineering

Virginia Military Institute

Lexington, United States

squirejc@vmi.edu

Abstract—Finite Impulse Response (FIR) filters can be

designed to be linear phase, causal, and they are guaranteed to be

stable. These advantages result in their wide adoption in audio

processing, communications, image processing, and pattern

recognition, among other applications. Some common design

methods of FIR filters include windowing, multiband with

transition bands, constrained least squares, frequency-sampling,

arbitrary response, and raised cosine. Yet, despite the ubiquity of

FIR filters, no open-source implementation of the frequency-

sampling method of FIR design in the popular C# language is

available.

This paper presents open-source FIR filter design code that

implements the frequency-sampling method in C#, and verifies its

operation. This well-known filter design method takes a set of

frequencies and the desired filter’s amplitude at each, and then

interpolates these points to create the same number of

frequency/amplitude pairs as the desired FIR filter order, using

equally-spaced frequencies spanning ω=0 to π rad/s. The inverse

Discrete Fourier Transform is applied to this data to create a time-

domain response, and then this is windowed to create the impulse

response of the system that implements the desired filter.

Performance testing compared paired filters in MATLAB and C#

that were each designed to mimic several audiograms. Each

audiogram specified desired attenuations from -80 dB to 6 dB at

eight logarithmically spaced frequencies from 250 Hz to 8 kHz,

and these were realized with the design of a 1000 tap FIR filter.

In all cases, the C#-computed filter’s frequency domain

performance matched the one designed by MATLAB essentially

perfectly, to within two orders of magnitude of the precision of the

double data type, suggesting that the open-source FIR filter design

method we describe is successful.

Keywords—FIR, filter, frequency sampling

I. INTRODUCTION

Signals exist everywhere and in forms such as speech,
music, picture, and video [1]. They carry information in their
dependent variable(s) such as pressure, voltage, illumination,
stock price, or temperature as a function of their independent
variable(s), which are often time or distance. Signals may be
functions of one or multiple independent variables and encode
information in one or multiple dependent variables. Their
independent and dependent variables may be continuous or
discretized into predefined quantized levels. If only the
independent variable system is discretized we refer to the system

as a discrete time system, and if both the independent and
dependent variables are quantized we refer to the system as
digital [1].

This paper considers one type of signal, audio (see Fig. 1),
to motivate the development of an open-source filter that
modifies it. The audio data considered is recorded in discrete
time at a given sampling frequency, and it is encoded at a
sufficiently high bit depth that artifacts from amplitude
quantization of the dependent variable can be ignored. Only one
independent variable (time) and one dependent output variable
(air pressure of the audio signal) are considered, although the
extension to multiple channel audio is trivial.

Fig.1 The energy content by frequency of the spoken phrase “Hello there.”

In a speech, consonants form broadband signals that hold more speech
information than the vowels which form more narrowband signals [2]. Vowel

energy predominantly ranges from 250 Hz to 1 kHz, and consonant energy

ranges from 250 Hz to 8 kHz. Speech may still be intelligible without vowels,
so people with high-frequency hearing deficits may retain the ability to orally

communicate. [3]

If signals are nouns, filters are the verbs that act on input
signals and map them to corresponding output signals. Filters
have many different purposes, may be linear or nonlinear, and
may be time-variant or time-invariant [4]. Filters may be
specified in the time-domain, for instance when creating
matched filters or time-delay filters, or they may be specified in
the frequency-domain, for instance, when amplifying or
attenuating signals based upon their frequency components [1].
Frequency-based filters may have a simple specification, such
as lowpass filters that attempt to pass signals below a given
frequency and stop components with frequencies above it, or the
specification may be more complex, such as specifying the
desired attenuation in several different passbands.

This paper describes the development of the latter type of
filter, one using the frequency sampling method, that permits the

specification of attenuation of the filter at any number of given
frequencies. Fig. 2 shows an example audiogram, which is
representation of the filtering that occurs within the human
hearing system at eight predefined frequencies. A person with
normotypic hearing has an audiogram of 0 dB across all tested
frequencies. A hearing-impaired person will experience
attenuated hearing at certain frequencies. Audiologists consider
less than 20 dB attenuation as normal; 20-40 dB attenuation is
considered mild hearing loss, 40-70 dB is moderate, and greater
than 70 dB attenuation relative to normotypic hearing is
considered profound hearing loss.

Fig. 2 This human audiogram is an example of a filter specified in the
frequency domain. This is taken from a person with profound high frequency

hearing loss, but relatively normal low frequency hearing. The figure depicts

the filtering operation of the person’s hearing system relative to a typical
person’s 0dB hearing across the range of frequencies from 250 Hz to 8 kHz.

The phase response of a filter describes the output phase
relative to the input phase as a function of frequency. A
nonlinear relationship between the frequency and phase of a
filter results in the change of the time-domain shape of a signal
in the passband. A linear relation between frequency and phase
is preferred for applications that are sensitive to the morphology
of a signal, including many audio applications, since these filters
maintain a constant group delay.

Discrete-time filters may be broadly categorized by the
length of their impulse response, into infinite impulse response
(IIR) and finite impulse response (FIR) filters. IIR filters are
typically chosen for applications where the linear phase is less
important, since they cannot be made precisely linear phase if
finite order, although they have an advantage over FIR filters by
having generally a steeper frequency-domain response for a
given filter complexity. FIR filters, in contrast, are guaranteed
stable for any input, and can easily be made to have linear phase
characteristics by designing a symmetric, or anti-symmetric,
impulse response around their group delay. This paper describes
the design of a linear phase, FIR filter.

Once the M+1 length impulse response h[n] of a FIR filter is
determined, the output y[n] to a given input x[n] can be
calculated using the convolution sum shown below.

 ���� � ∑ ��� � 	� ℎ�	� �

�� (1)

This convolutional sum has several implementations. The
Direct Form II Transposed implementation is shown in block
diagram form in Fig. 3 and is implemented in code in Fig. 6.

Fig. 3 The direct form implementation of a FIR filter of order M sums scaled

values of M+1 taps of the input delay line. The M+1 scaling coefficients of h[n]
specify the FIR filter.

There are many well-known FIR filter design methods,
including the window design method, the raised cosine method,
the frequency sampling method, constrained least squares, and
the Parks-McClellan method for equiripple filters [5]. The
windowing method samples the central section of an ideal IIR
impulse response to create a finite-duration impulse response.
The raised cosine method produces low pass, high pass, band
pass, and band stop filters with smooth frequency band
transitions. The frequency sampling, Parks-McClellan, and least
square minimization techniques all permit the design of filters
with arbitrary frequency-domain specified behavior. This paper
describes an implementation of the frequency sampling FIR,
linear phase filter in C#.

II. FILTER DESIGN METHOD

The frequency sampling method permits the design of an
arbitrary-magnitude filter in the frequency domain as shown in
Fig. 4. The user specifies two vectors holding the desired
magnitude response at a corresponding set of frequencies. The
user also selects the filter order M corresponding to the desired
FIR filter order. The larger the order, the more closely the
designed filter will approximate the specified response, although
it may develop larger artifacts at non-specified frequencies. The
filter coefficients are extracted and form the scaling factors h[n]
in Fig. 3 to implement the filter.

Fig. 4 The frequency sampling method of FIR filter design.

III. CODE

The C# code that constructs the filter, an example of its use,

and a readme document is available through the link below in

GitHub.

http://bit.ly/3gBNJDl

double fs = 44100;

double[] fHz = {0,250,500,1e3,2e3, 3e3, 4e3, 6e3, 8e3, fs/2};

double[] vaudiogram = {6, 0, 0, -20, -30, -40, -50, -60};

// Filter Order M

double filterM = 1000;

// Calculate the Vector of N frequencies

double[] vFreqs = new double[fHz.Length];

for (int i = 0; i < fHz.Length; i++)

 vFreqs[i] = fHz[i] / (fs / 2.0);

// Calculate the Vector of Magnitudes

double[] vA = new double[vaudiogram.Length];

for (int i = 0; i < vaudiogram.Length; i++)

 vA[i] = Math.Pow(10, (double)vaudiogram[i] / 20.0);

double[] vMags = new double[vA.Length + 2];

vMags[0] = vA[0];

vMags[vMags.Length - 1] = vA[vA.Length - 1];

for (int i = 1; i < vMags.Length - 1; i++)

 vMags[i] = vA[i - 1];

// Calculate the Filter Coefficients

double[] h = new double[(int)filterM + 1];

Filter(filterM, vFreqs, vMags, out h);

// Print the Filter Coefficients

Console.WriteLine("Filter Coefficients: ");

for (int i = 0; i <= filterM; i++)

 Console.WriteLine(h[i]);

Fig. 5 This code provides an example of generating the filter specified by the

upper panel of Fig. 9. It takes the fHz vector of specified frequencies in Hz and
the corresponding desired filter magnitude response vaudiogram vector. The

FIR filter coefficients are returned in vector h in the same order as listed in eqn.

1 and Fig. 3.

The core C# filter design program is named Filter, and its
arguments are listed in Table I.

TABLE I. FILTER ARGUMENTS

Input Data Type Description Notes

filterM double filter order must be even

vFreqs
vector of
doubles

vector of N
frequencies

ranges from 0 to 1

vMags
vector of
doubles

vector of N
magnitudes

same length as vFreqs

The FIR filter coefficients generated by the Fig 5 code can
be used to filter an input signal as shown in Fig 6. This example
first generates an input signal using eight segments of one-
second sinusoids, each segment corresponding to the eight
frequencies in Fig. 5. It then completes the filtering operation
with FIR filter h using the direct-form II transposed
implementation [6]. The output, shown in Fig 7, demonstrates
the specified filter attenuations at each of these eight
frequencies. A precise analysis of the filter performance is
conducted in the following Results section.

// Define variables

int fs = 44100;

double[] x = new double[fs*8]; // input vector

double[] fHz = {250, 500, 1e3, 2e3, 3e3, 4e3, 6e3, 8e3};

// Create the input signal x of 1s of each frequency in fHz

double t = 0; // current time

for (int iFreq = 0; iFreq < 8; iFreq++, t += 1.0/fs)

 for (int i = 0; i < fs; i++)

 x[i+iFreq*fs] = Math.Cos(2*Math.PI*fHz[iFreq]*t);

// Filter x using the filter h created in Fig. 5

double[] y = new double[x.Length]; // output vector

for (int i = 0; i < x.Length; i++)

{

 for (int j = 0; j < h.Length; j++)

 {

 if (i - j < 0) continue;

 y[i] += h[j] * x[i-j];

 }

}

Console.WriteLine("Filtered output Data: ");

for (int i = 0; i <= filterM; i++)

 Console.WriteLine(y[i]);

Fig. 6 This example code creates a test signal composed of eight one-second

signals from 250Hz to 8kHz to validate the accuracy of the filter designed in

Fig. 5.

Fig. 7 The time-domain output of the filter designed in Fig. 5 to a set of one

second sinusoids of 1V magnitude corresponding to the frequencies of the

designed filter, specifically 250, 500, 1k, 2k, 3k, 5k, 6k, and 8kHz. The
resulting signal’s gain approximately mirrors that of the design specifications.

IV. RESULTS

Filters designed using the C# code reported in this paper
were compared with both the desired filter’s specification and
with filters designed using MATLAB’s frequency sampling-
based FIR filter design (fir2) procedure [7]. Three representative
audiograms were chosen for testing, and for each audiogram two
graphs were generated. The upper panel compares the specified
filter magnitude/frequency pairs (shown as a scatterplot using
boxes) with the C#-generated filter (shown as a dotted line) and
the MATLAB-generated filter (shown as a dashed line). Since
the MATLAB and C# data are very similar and thus difficult to
distinguish, the difference between them are plotted in the lower
panel.

The first example in Fig. 8 is a simple reference case of a
constant -10 dB hearing loss across all frequencies. The upper
panel indicates there is no apparent difference between this
scaling filter designed by the C# program and MATLAB, and
both filters perform the specified 10 dB attenuation. The lower
panel shows the maximum deviations between the desired
specifications and the C# filter, as well as the maximum
difference between the filters designed in C# and MATLAB,
computed as (C# attenuation in dB – MATLAB attenuation in
dB). The largest of these differences is 1.42 x 10-14, on the order
of machine epsilon given the double precision IEEE numbers
used.

Fig. 8 A reference filter design that cuts all frequencies by -10 dB performs

as expected, with matched C# and MATLAB reference filter design outputs
indistinguishable and identical to the filter specification to within an order of

magnitude of machine precision. There are no visible black bars in the lower

panel since there was no difference between the specified and C# computed
filter attenuations.

The second example in Fig. 9 illustrates a typical audiogram
with a complex relationship between test frequencies and
hearing loss. This is also the same specification as represented
in Fig. 5 and illustrated in the time domain by Fig. 7. This
example shows excellent agreement between the C# filter and
the specified audiogram, with the largest absolute error at 250
Hz. At this frequency, the C# filter’s attenuation is about 5.3 dB,
about 0.7 dB less than the specified 6 dB. This can be seen in
Fig. 7, in which the first second of the output sinusoid,
corresponding to 250Hz, only has an amplitude of 1.84, which
corresponds to 5.3 dB. This 0.7 dB maximum error compares
favorably with the 66 dB spread of specified gains of the filter,
and is a result of the limited frequency resolution of the filter,
from its order, coupled with smoothing effects of the Hamming
window.

There was no difference between the C# designed filter and
the MATLAB designed filter at the scale of the lower panel, and
thus only the black bars of the C# vs. specified gain bars are
visible.

Fig. 9 This complex filter specification, typical of an actual audiogram for a
person with severe high frequency hearing loss, shows excellent agreement

among the filter specification, the C#-designed filter, and the MATLAB-

designed filter, with a maximum deviation of about 0.7 dB at 250 Hz.

The final example demonstrates how large changes in the
specified attenuation over short changes in frequency strain the
ability of this frequency-specified filter to match accurately. Fig.
10 shows an audiogram in which over 50 dB of filter attenuation
must change given a 250 Hz change in input. At these extremes,
up to a 10.5 dB error between specified and actual attenuation
occurs. As in previous examples, the difference between the C#-
designed filter and the MATLAB-designed filters is not
noticeable at this scale and in fact is within two orders of
magnitude of machine epsilon.

Fig. 10 Specifying large changes in filter attenuation over small changes in
frequency can strain the ability of the frequency-specification filter design

method. In this example, changes of roughly 50 dB of attenuation over 250 Hz

cause errors of about 10 dB between the specified and designed filter.

Other than the filtering performance shown above, several
other performance metrics of this C# filter were compared with
the gold standard of discrete-time filter design, MATLAB.

Specifically, the speed, cost, and system requirements for the
1000 tap frequency sampling-based FIR C# filter was compared
to MATLAB, as shown in Table II.

TABLE II. PERFORMANCE METRIC COMPARISON

 MATLAB C#

Speed 478 μs 200 μs

Disk Space 700 MB 120 kB

RAM 1.2 GB 2.7 MB

It must be noted that it is difficult to perform a direct comparison
between C# and MATLAB since the former is compiled into a
compact intermediate language, and the latter is typically
executed interactively as an interpreted language. While
MATLAB does support the MATLAB Coder toolbox to create
C or C++ code, Mathworks does not support direct compilation
of their Signal Processing Toolbox functions, including fir2.m
[8]. Instead, one must use the MATLAB Compiler Runtime
(MCR) to create a standalone application. This involves a large
amount of disk space and RAM. A user who prefers the
MATLAB development environment could avoid this overhead
by recreating the fir2.m functionality by hand coding it in
MATLAB without use of toolboxes, much as we have done in
C#; this is outside the scope of this paper.

A. Speed

Iterated testing showed that the average speed to design a

1000th order FIR filter using the MATLAB frequency

specification method is 478 μs, while the average speed for the

C# filter is 200 μs, about 2.4 fold faster. The absolute speed is

clearly a function of the particular computer used (Intel®

Xeon® E-2224G CPU, 3.5GHz, 32 GB RAM), but the fact that

the C# code is about 2.4x faster is a relatively invariant metric.

B. Disk Space

Mathworks advises that a minimum installation of
MATLAB requires 4 GB of disk space. Since MATLAB is
usually used interactively through its IDE to design filters, this
is therefore the same space that it takes to design frequency
sampled filters. Use of the MCC compiler to compile the code
to run without MATLAB reduces the file size to about 700 MB
with the MCR. In contrast, C# console code such as shown in
Figs. 5 and 6 compile to about 120 kB, about 0.02% of the
compiled MATLAB size. The C# code can be further reduced
to 25 kB if the optional Windows icons are removed. Minor
changes to port this to the C language would make this
appropriate for use in embedded systems.

C. RAM

The memory requirement for MATLAB is listed by
Mathworks as 4 GB, however Windows reports that it actually
uses only approximately 1.2 GB when running the frequency
specified filter design function. Windows reports that the C#
compiled program uses 2.7 MB of RAM, about 0.2% of the
memory that MATLAB requires. This also suggests its
suitability for embedded systems use if ported to C. This is a
relatively simple port since no object-oriented functionality or
external dependencies are used.

V. CONCLUSION

This paper presents a frequency sampling-based FIR filter
design program using the C# language. Example filter design
and filter testing code is provided in a GitHub repository.
Testing was performed using speech audiogram processing as
an example application, and its filtering performance was found
to be indistinguishable from MATLAB, within rounding errors
caused by limited machine precision. Since this code is far more
compact than MATLAB’s, and is fully specified without
requiring associated .dll’s, it may also be appropriate for
embedded system use with slight modifications into the C
language.

REFERENCES

[1] S. K. Mitra, “Digital Signal Processing: A Computer Based Approach,”

McGraw-Hill Higher Education, pp. 1-15, 2001.

[2] J. W. Pitton, K. Wang, B. Juang, et al., “Time-Frequency Analysis and
Auditory Monitoring for Automatic Recognition of Speech,” Proc. of the
IEEE, vol. 84, pp. 1199-2004, September 1994.

[3] S. Furui, “Digital Peech Processing, Synthesis, and Recognition,” Mercel
Dekker, pp. 14-20, 2000.

[4] W. M. Siebert, “Circuits, Signals, and Systems,” The MIT Press, pp. 4-5,
1986.

[5] L. R. Rabiner and B. Gold, “Theory and Application of Digital Signal
Processing,” Prentice-Hall, pp. 136-140, 1975.

[6] A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing.
Prentice Hall, pp. 309-313, 1999.

[7] “Frequency sampling-based FIR filter design - MATLAB
fir2,” www.mathworks.com.
https://www.mathworks.com/help/signal/ref/fir2.html (accessed Dec. 10,
2022).

[8] “Support Limitations for MATLAB for Code Generation - MATLAB &
Simulink,” www.mathworks.com.
https://www.mathworks.com/help/sldv/ug/support-limitations-for-
matlab-for-code-generation-1.html (accessed Dec. 10, 2022).

