
 

C# Frequency Sampling-Based FIR Filter Design 
 

Binh Quoc Tran 

Electrical and Computer Engineering 

Virginia Military Institute 

Lexington, United States 

tranbq23@mail.vmi.edu  

Cole Bowyer 

Electrical and Computer Engineering 

Virginia Military Institute 

Lexington, United States 

bowyercs25@mail.vmi.edu 

James C. Squire 

Electrical and Computer Engineering 

Virginia Military Institute 

Lexington, United States 

squirejc@vmi.edu 

Abstract—Finite Impulse Response (FIR) filters can be 

designed to be linear phase, causal, and they are guaranteed to be 

stable. These advantages result in their wide adoption in audio 

processing, communications, image processing, and pattern 

recognition, among other applications. Some common design 

methods of FIR filters include windowing, multiband with 

transition bands, constrained least squares, frequency-sampling, 

arbitrary response, and raised cosine. Yet, despite the ubiquity of 

FIR filters, no open-source implementation of the frequency-

sampling method of FIR design in the popular C# language is 

available.  

This paper presents open-source FIR filter design code that 

implements the frequency-sampling method in C#, and verifies its 

operation. This well-known filter design method takes a set of 

frequencies and the desired filter’s amplitude at each, and then 

interpolates these points to create the same number of 

frequency/amplitude pairs as the desired FIR filter order, using 

equally-spaced frequencies spanning ω=0 to π rad/s. The inverse 

Discrete Fourier Transform is applied to this data to create a time-

domain response, and then this is windowed to create the impulse 

response of the system that implements the desired filter. 

Performance testing compared paired filters in MATLAB and C# 

that were each designed to mimic several audiograms. Each 

audiogram specified desired attenuations from -80 dB to 6 dB at 

eight logarithmically spaced frequencies from 250 Hz to 8 kHz, 

and these were realized with the design of a 1000 tap FIR filter.  

In all cases, the C#-computed filter’s frequency domain 

performance matched the one designed by MATLAB essentially 

perfectly, to within two orders of magnitude of the precision of the 

double data type, suggesting that the open-source FIR filter design 

method we describe is successful. 
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I. INTRODUCTION 

Signals exist everywhere and in forms such as speech, 
music, picture, and video [1]. They carry information in their 
dependent variable(s) such as pressure, voltage, illumination, 
stock price, or temperature as a function of their independent 
variable(s), which are often time or distance. Signals may be 
functions of one or multiple independent variables and encode 
information in one or multiple dependent variables. Their 
independent and dependent variables may be continuous or 
discretized into predefined quantized levels. If only the 
independent variable system is discretized we refer to the system 

as a discrete time system, and if both the independent and 
dependent variables are quantized we refer to the system as 
digital [1]. 

This paper considers one type of signal, audio (see Fig. 1), 
to motivate the development of an open-source filter that 
modifies it. The audio data considered is recorded in discrete 
time at a given sampling frequency, and it is encoded at a 
sufficiently high bit depth that artifacts from amplitude 
quantization of the dependent variable can be ignored. Only one 
independent variable (time) and one dependent output variable 
(air pressure of the audio signal) are considered, although the 
extension to multiple channel audio is trivial. 

 

Fig.1 The energy content by frequency of the spoken phrase “Hello there.” 

In a speech, consonants form broadband signals that hold more speech 
information than the vowels which form more narrowband signals [2]. Vowel 

energy predominantly ranges from 250 Hz to 1 kHz, and consonant energy 

ranges from 250 Hz to 8 kHz. Speech may still be intelligible without vowels, 
so people with high-frequency hearing deficits may retain the ability to orally 

communicate. [3]  

If signals are nouns, filters are the verbs that act on input 
signals and map them to corresponding output signals. Filters 
have many different purposes, may be linear or nonlinear, and 
may be time-variant or time-invariant [4]. Filters may be 
specified in the time-domain, for instance when creating 
matched filters or time-delay filters, or they may be specified in 
the frequency-domain, for instance, when amplifying or 
attenuating signals based upon their frequency components [1]. 
Frequency-based filters may have a simple specification, such 
as lowpass filters that attempt to pass signals below a given 
frequency and stop components with frequencies above it, or the 
specification may be more complex, such as specifying the 
desired attenuation in several different passbands. 

This paper describes the development of the latter type of 
filter, one using the frequency sampling method, that permits the 



specification of attenuation of the filter at any number of given 
frequencies. Fig. 2 shows an example audiogram, which is 
representation of the filtering that occurs within the human 
hearing system at eight predefined frequencies. A person with 
normotypic hearing has an audiogram of 0 dB across all tested 
frequencies. A hearing-impaired person will experience 
attenuated hearing at certain frequencies. Audiologists consider 
less than 20 dB attenuation as normal; 20-40 dB attenuation is 
considered mild hearing loss, 40-70 dB is moderate, and greater 
than 70 dB attenuation relative to normotypic hearing is 
considered profound hearing loss. 

 

Fig. 2 This human audiogram is an example of a filter specified in the 
frequency domain. This is taken from a person with profound high frequency 

hearing loss, but relatively normal low frequency hearing. The figure depicts 

the filtering operation of the person’s hearing system relative to a typical 
person’s 0dB hearing across the range of frequencies from 250 Hz to 8 kHz. 

The phase response of a filter describes the output phase 
relative to the input phase as a function of frequency. A 
nonlinear relationship between the frequency and phase of a 
filter results in the change of the time-domain shape of a signal 
in the passband. A linear relation between frequency and phase 
is preferred for applications that are sensitive to the morphology 
of a signal, including many audio applications, since these filters 
maintain a constant group delay. 

Discrete-time filters may be broadly categorized by the 
length of their impulse response, into infinite impulse response 
(IIR) and finite impulse response (FIR) filters. IIR filters are 
typically chosen for applications where the linear phase is less 
important, since they cannot be made precisely linear phase if 
finite order, although they have an advantage over FIR filters by 
having generally a steeper frequency-domain response for a 
given filter complexity. FIR filters, in contrast, are guaranteed 
stable for any input, and can easily be made to have linear phase 
characteristics by designing a symmetric, or anti-symmetric, 
impulse response around their group delay. This paper describes 
the design of a linear phase, FIR filter. 

Once the M+1 length impulse response h[n] of a FIR filter is 
determined, the output y[n] to a given input x[n] can be 
calculated using the convolution sum shown below. 
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This convolutional sum has several implementations. The 
Direct Form II Transposed implementation is shown in block 
diagram form in Fig. 3 and is implemented in code in Fig. 6. 

 

 

 

 

Fig. 3 The direct form implementation of a FIR filter of order M sums scaled 

values of M+1 taps of the input delay line. The M+1 scaling coefficients of h[n] 
specify the FIR filter. 

There are many well-known FIR filter design methods, 
including the window design method, the raised cosine method, 
the frequency sampling method, constrained least squares, and 
the Parks-McClellan method for equiripple filters [5]. The 
windowing method samples the central section of an ideal IIR 
impulse response to create a finite-duration impulse response. 
The raised cosine method produces low pass, high pass, band 
pass, and band stop filters with smooth frequency band 
transitions. The frequency sampling, Parks-McClellan, and least 
square minimization techniques all permit the design of filters 
with arbitrary frequency-domain specified behavior. This paper 
describes an implementation of the frequency sampling FIR, 
linear phase filter in C#. 

 

II. FILTER DESIGN METHOD 

The frequency sampling method permits the design of an 
arbitrary-magnitude filter in the frequency domain as shown in 
Fig. 4. The user specifies two vectors holding the desired 
magnitude response at a corresponding set of frequencies. The 
user also selects the filter order M corresponding to the desired 
FIR filter order. The larger the order, the more closely the 
designed filter will approximate the specified response, although 
it may develop larger artifacts at non-specified frequencies. The 
filter coefficients are extracted and form the scaling factors h[n] 
in Fig. 3 to implement the filter. 

 

Fig. 4 The frequency sampling method of FIR filter design. 



III. CODE 

The C# code that constructs the filter, an example of its use, 

and a readme document is available through the link below in 

GitHub.  

http://bit.ly/3gBNJDl 
 

double fs = 44100; 

double[] fHz = {0,250,500,1e3,2e3, 3e3, 4e3, 6e3, 8e3, fs/2}; 

double[] vaudiogram = {6, 0, 0, -20, -30, -40, -50, -60}; 

 

// Filter Order M 

double filterM = 1000; 

 

// Calculate the Vector of N frequencies 

double[] vFreqs = new double[fHz.Length]; 

for (int i = 0; i < fHz.Length; i++) 

    vFreqs[i] = fHz[i] / (fs / 2.0); 

 

// Calculate the Vector of Magnitudes 

double[] vA = new double[vaudiogram.Length]; 

for (int i = 0; i < vaudiogram.Length; i++) 

    vA[i] = Math.Pow(10, (double)vaudiogram[i] / 20.0); 

 

double[] vMags = new double[vA.Length + 2]; 

vMags[0] = vA[0]; 

vMags[vMags.Length - 1] = vA[vA.Length - 1]; 

 

for (int i = 1; i < vMags.Length - 1; i++) 

    vMags[i] = vA[i - 1]; 

 

// Calculate the Filter Coefficients 

double[] h = new double[(int)filterM + 1]; 

Filter(filterM, vFreqs, vMags, out h); 

 

// Print the Filter Coefficients 

Console.WriteLine("Filter Coefficients: "); 

for (int i = 0; i <= filterM; i++) 

    Console.WriteLine(h[i]); 

 

Fig. 5 This code provides an example of generating the filter specified by the 

upper panel of Fig. 9. It takes the fHz vector of specified frequencies in Hz and 
the corresponding desired filter magnitude response vaudiogram vector. The 

FIR filter coefficients are returned in vector h in the same order as listed in eqn. 

1 and Fig. 3. 

The core C# filter design program is named Filter, and its 
arguments are listed in Table I. 

TABLE I.  FILTER ARGUMENTS 

Input Data Type Description Notes 

filterM double filter order must be even 

vFreqs 
vector of 
doubles 

vector of N 
frequencies 

ranges from 0 to 1 

vMags 
vector of 
doubles 

vector of N 
magnitudes 

same length as vFreqs 

 

The FIR filter coefficients generated by the Fig 5 code can 
be used to filter an input signal as shown in Fig 6. This example 
first generates an input signal using eight segments of one-
second sinusoids, each segment corresponding to the eight 
frequencies in Fig. 5. It then completes the filtering operation 
with FIR filter h using the direct-form II transposed 
implementation [6]. The output, shown in Fig 7, demonstrates 
the specified filter attenuations at each of these eight 
frequencies. A precise analysis of the filter performance is 
conducted in the following Results section. 

// Define variables 

int fs = 44100; 

double[] x = new double[fs*8]; // input vector 

double[] fHz = {250, 500, 1e3, 2e3, 3e3, 4e3, 6e3, 8e3}; 

 

// Create the input signal x of 1s of each frequency in fHz 

double t = 0;   // current time  

for (int iFreq = 0; iFreq < 8; iFreq++, t += 1.0/fs) 

    for (int i = 0; i < fs; i++) 

        x[i+iFreq*fs] = Math.Cos(2*Math.PI*fHz[iFreq]*t); 

 

// Filter x using the filter h created in Fig. 5 

double[] y = new double[x.Length]; // output vector 

for (int i = 0; i < x.Length; i++) 

{ 

    for (int j = 0; j < h.Length; j++) 

    { 

        if (i - j < 0) continue; 

        y[i] += h[j] * x[i-j]; 

    } 

} 

Console.WriteLine("Filtered output Data: "); 

for (int i = 0; i <= filterM; i++) 

    Console.WriteLine(y[i]); 

Fig. 6 This example code creates a test signal composed of eight one-second 

signals from 250Hz to 8kHz to validate the accuracy of the filter designed in 

Fig. 5. 

 

Fig. 7 The time-domain output of the filter designed in Fig. 5 to a set of one 

second sinusoids of 1V magnitude corresponding to the frequencies of the 

designed filter, specifically 250, 500, 1k, 2k, 3k, 5k, 6k, and 8kHz.  The 
resulting signal’s gain approximately mirrors that of the design specifications. 

IV. RESULTS 

Filters designed using the C# code reported in this paper 
were compared with both the desired filter’s specification and 
with filters designed using MATLAB’s frequency sampling-
based FIR filter design (fir2) procedure [7]. Three representative 
audiograms were chosen for testing, and for each audiogram two 
graphs were generated. The upper panel compares the specified 
filter magnitude/frequency pairs (shown as a scatterplot using 
boxes) with the C#-generated filter (shown as a dotted line) and 
the MATLAB-generated filter (shown as a dashed line). Since 
the MATLAB and C# data are very similar and thus difficult to 
distinguish, the difference between them are plotted in the lower 
panel. 



The first example in Fig. 8 is a simple reference case of a 
constant -10 dB hearing loss across all frequencies. The upper 
panel indicates there is no apparent difference between this 
scaling filter designed by the C# program and MATLAB, and 
both filters perform the specified 10 dB attenuation. The lower 
panel shows the maximum deviations between the desired 
specifications and the C# filter, as well as the maximum 
difference between the filters designed in C# and MATLAB, 
computed as (C# attenuation in dB – MATLAB attenuation in 
dB). The largest of these differences is 1.42 x 10-14, on the order 
of machine epsilon given the double precision IEEE numbers 
used.  

 

 

Fig. 8 A reference filter design that cuts all frequencies by -10 dB performs 

as expected, with matched C# and MATLAB reference filter design outputs 
indistinguishable and identical to the filter specification to within an order of 

magnitude of machine precision. There are no visible black bars in the lower 

panel since there was no difference between the specified and C# computed 
filter attenuations. 

The second example in Fig. 9 illustrates a typical audiogram 
with a complex relationship between test frequencies and 
hearing loss. This is also the same specification as represented 
in Fig. 5 and illustrated in the time domain by Fig. 7. This 
example shows excellent agreement between the C# filter and 
the specified audiogram, with the largest absolute error at 250 
Hz. At this frequency, the C# filter’s attenuation is about 5.3 dB, 
about 0.7 dB less than the specified 6 dB. This can be seen in 
Fig. 7, in which the first second of the output sinusoid, 
corresponding to 250Hz, only has an amplitude of 1.84, which 
corresponds to 5.3 dB. This 0.7 dB maximum error compares 
favorably with the 66 dB spread of specified gains of the filter, 
and is a result of the limited frequency resolution of the filter, 
from its order, coupled with smoothing effects of the Hamming 
window. 

There was no difference between the C# designed filter and 
the MATLAB designed filter at the scale of the lower panel, and 
thus only the black bars of the C# vs. specified gain bars are 
visible. 

 

 

Fig. 9 This complex filter specification, typical of an actual audiogram for a 
person with severe high frequency hearing loss, shows excellent agreement 

among the filter specification, the C#-designed filter, and the MATLAB-

designed filter, with a maximum deviation of about 0.7 dB at 250 Hz. 

The final example demonstrates how large changes in the 
specified attenuation over short changes in frequency strain the 
ability of this frequency-specified filter to match accurately. Fig. 
10 shows an audiogram in which over 50 dB of filter attenuation 
must change given a 250 Hz change in input. At these extremes, 
up to a 10.5 dB error between specified and actual attenuation 
occurs. As in previous examples, the difference between the C#-
designed filter and the MATLAB-designed filters is not 
noticeable at this scale and in fact is within two orders of 
magnitude of machine epsilon. 

 

Fig. 10 Specifying large changes in filter attenuation over small changes in 
frequency can strain the ability of the frequency-specification filter design 

method. In this example, changes of roughly 50 dB of attenuation over 250 Hz 

cause errors of about 10 dB between the specified and designed filter. 

Other than the filtering performance shown above, several 
other performance metrics of this C# filter were compared with 
the gold standard of discrete-time filter design, MATLAB. 



Specifically, the speed, cost, and system requirements for the 
1000 tap frequency sampling-based FIR C# filter was compared 
to MATLAB, as shown in Table II. 

TABLE II.  PERFORMANCE METRIC COMPARISON 

 MATLAB C# 

Speed 478 μs 200 μs 

Disk Space 700 MB 120 kB 

RAM 1.2 GB 2.7 MB 

It must be noted that it is difficult to perform a direct comparison 
between C# and MATLAB since the former is compiled into a 
compact intermediate language, and the latter is typically 
executed interactively as an interpreted language.  While 
MATLAB does support the MATLAB Coder toolbox to create 
C or C++ code, Mathworks does not support direct compilation 
of their Signal Processing Toolbox functions, including fir2.m 
[8]. Instead, one must use the MATLAB Compiler Runtime 
(MCR) to create a standalone application.  This involves a large 
amount of disk space and RAM. A user who prefers the 
MATLAB development environment could avoid this overhead 
by recreating the fir2.m functionality by hand coding it in 
MATLAB without use of toolboxes, much as we have done in 
C#; this is outside the scope of this paper. 

A. Speed  

Iterated testing showed that the average speed to design a 

1000th order FIR filter using the MATLAB frequency 

specification method is 478 μs, while the average speed for the 

C# filter is 200 μs, about 2.4 fold faster.  The absolute speed is 

clearly a function of the particular computer used (Intel® 

Xeon® E-2224G CPU, 3.5GHz, 32 GB RAM), but the fact that 

the C# code is about 2.4x faster is a relatively invariant metric. 

B. Disk Space 

Mathworks advises that a minimum installation of 
MATLAB requires 4 GB of disk space. Since MATLAB is 
usually used interactively through its IDE to design filters, this 
is therefore the same space that it takes to design frequency 
sampled filters. Use of the MCC compiler to compile the code 
to run without MATLAB reduces the file size to about 700 MB 
with the MCR. In contrast, C# console code such as shown in 
Figs. 5 and 6 compile to about 120 kB, about 0.02% of the 
compiled MATLAB size. The C# code can be further reduced 
to 25 kB if the optional Windows icons are removed. Minor 
changes to port this to the C language would make this 
appropriate for use in embedded systems. 

C. RAM 

The memory requirement for MATLAB is listed by 
Mathworks as 4 GB, however Windows reports that it actually 
uses only approximately 1.2 GB when running the frequency 
specified filter design function. Windows reports that the C# 
compiled program uses 2.7 MB of RAM, about 0.2% of the 
memory that MATLAB requires.  This also suggests its 
suitability for embedded systems use if ported to C.  This is a 
relatively simple port since no object-oriented functionality or 
external dependencies are used. 

 

V. CONCLUSION 

This paper presents a frequency sampling-based FIR filter 
design program using the C# language. Example filter design 
and filter testing code is provided in a GitHub repository. 
Testing was performed using speech audiogram processing as 
an example application, and its filtering performance was found 
to be indistinguishable from MATLAB, within rounding errors 
caused by limited machine precision. Since this code is far more 
compact than MATLAB’s, and is fully specified without 
requiring associated .dll’s, it may also be appropriate for 
embedded system use with slight modifications into the C 
language. 
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