Effects of Balloon Overhang on Stented Arteries

Raevon Pulliam

Villanova University

Dr. Matthew Hyre Virginia Military Institute Dr. Jim Squire Virginia Military Institute

Biomed 2007 September 10, 2007

Background

- The degree of stent endflare has been theorized as a causitive factor in increased levels of neointimal hyperplasia
- Degree of endflare cannot be accurately measured except by *in-vivo* studies due to the presence of the surrounding artery
- The numerical methods described in this presentation provide a method to quantantatively analyze the effects of stent geometries on endflare without expensive invivo studies

Raevon Pulliam

2007

tember 1

Motivation of Study

- Determine the effect of balloon overhang on the inflation dynamics of the balloon/stent/artery system
- Investigate if the degree of balloon overhang has a direct impact on the magnitude of arterial stresses and vascular injury at the end of stent expansion

Previous Work in Area

Stent Inflation Studies with no Balloon Dynamics

- Lally, C., Dolan, FI, and Prendergast, P.J., Cardiovascular stent design and vessel stresses: a finite element analysis, *J. Biomechanics*, 38, pp. 1574-1581, 2005.
- F.Auricchio, M.Di Loreto, E.Sacco, Finite element analysis of a stenotic artery revascularization through stent insertion, Computer Methods in Biomechanics and Biomedical Engineering vol. 4, pg. 249-263, 2001
- Migliavacca F, Petrini L, Colombo M et al. Mechanical behavior of coronary stents investigated through the finite element method. Journal of Biomechanics 2002; 35:803-811.
- Balloon Dynamics with no Artery
 - Mortier P., De Beule M., Carlier S.G., Van Impe R., Verhegghe B., Verdonck P., Numerical study of non-uniform balloon-expandable stent deployment,

Raevon Pulliam

Introduction

This model presents a method for simulating the balloon stent expansion, and artery using full-contact nonlinear algorithms.

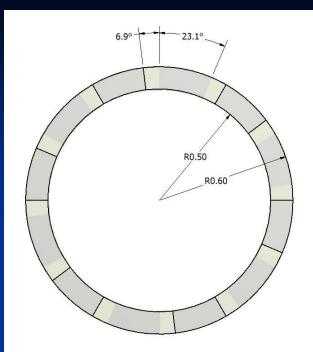
Assess the effects of length mismatch on stent expansion characteristics and arterial stresses

Geometry Creation

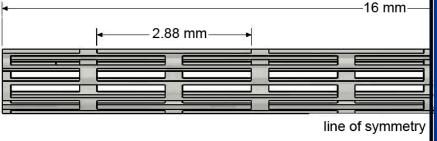
Three Main Components
Artery
Stent
Balloon
Full Scale Model

Coronary Artery

Length: 30 mm
Inside Diameter: 2.8 mm
Thickness: 0.3 mm



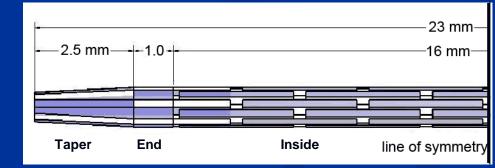
Stent


Length: 16 mm Inside Diameter: 1 mm Thickness: 0.1 mm 5 slots in longitudinal direction 12 slots in circumferential direction

Raevon Pulliam

End View of Stent

Side View of Stent



Balloon

Raevon Pulliam

Length: 23 mm - 22 mm Inside: 16 mm End (Overhang): 2 mm - 1 mm Taper: 5 mm

Unfolded state
 Assumed to be in contact with the stent

Side View of Balloon (2mm overhang)

September 10, 2007

Is our balloon lowcompliant, semicompliant, or compliant?

Artery: 7,680 elements

Hexahedral Elements

Average element size: 0.5 mm x 0.5 mm x 0.15 mm

Stent:

Hexahedral Elements

Average element size: 0.05 mm x 0.05 mm x 0.05 mm

Balloon:

Triangular Shell Elements

Average element size: 0.025 mm x 0.04 mm

September 10, 2007

Stent: 12,036 elements 2mm Balloon: 54,456 elements 1mm Balloon: 51,616 elements

Raevon Pulliam

X

Finite Element Analysis

Artery

- Element type: Solid185
- Characteristics of Element: eight nodes, large deflections and hyperelasticity capabilities (7,680 elements)
- Constraints: no rotation, axially constrained on ends
- Stent
 - Element type: Solid45
 - Characteristics of Element: eight nodes, large deflections and plasticity capabilities (12,036 elements)
 - Constraints: no rotation, internally applied pressure

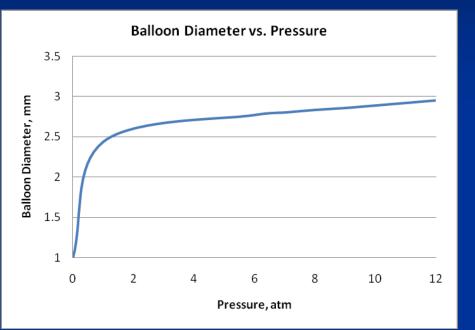
Balloon

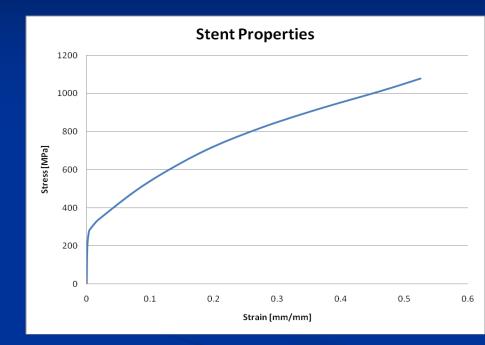
- Element type: Shell43
- Characteristics of Element: capable of modeling shell structures and have large deflection and plasticity capabilities (54,456 -51,616 elements)
- Constraints: no rotation, internally applied pressure

Computational Resources

 Pre-processor: Gambit and Harpoon
 Solver: ANSYS 10.0 and 11.0
 Post-Processor: Ensight
 SHOULD WE INCLUDE SOLVING TIME OR ANYTHING OF THAT NATURE HERE?

Material Models

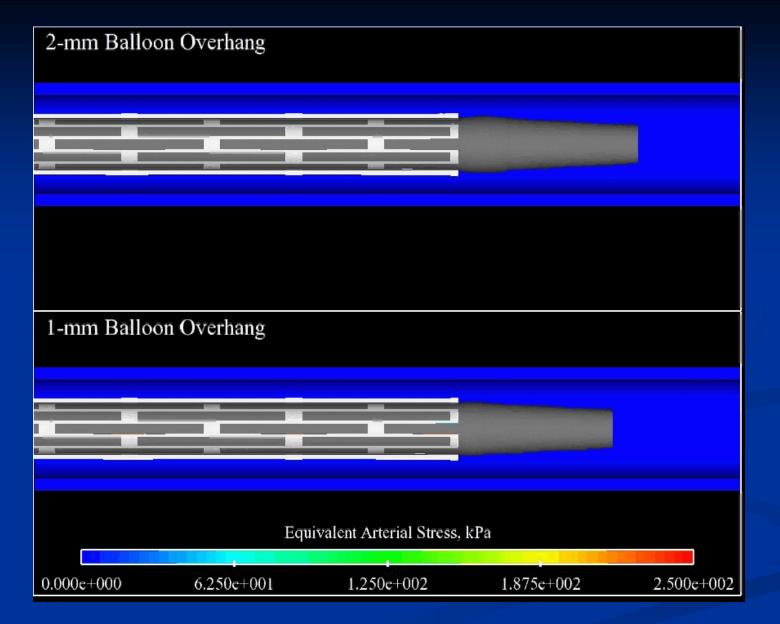

- Artery:
 - Five parameter, third-order, Mooney-Rivlin hyperelastic constituitive equation using constants developed by Lally et al.
- Stent:
 - modeled after the slotted tube geometry given by Migliavacca et al.
 - 316LN stainless steel
 - Poisson ratio is 0.3
 - Young Modulus is 200 GPa
- Balloon:
 - Empirically collected data



Material Models contd.

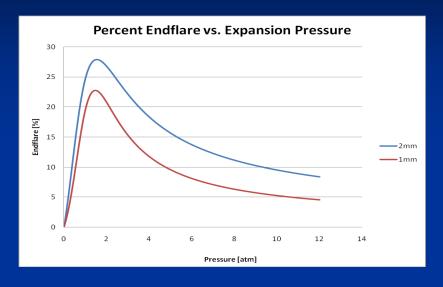
Internally Applied Pressure on Balloon

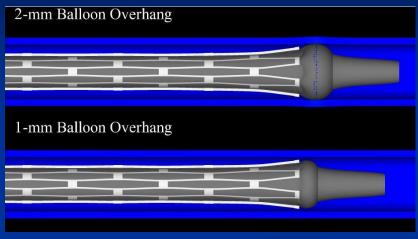
Do you have the balloon stress/strain curve?


This is labeled wrong in the paper as well!

Raevon Pulliam

Non-linear Plastic Stent Expansion



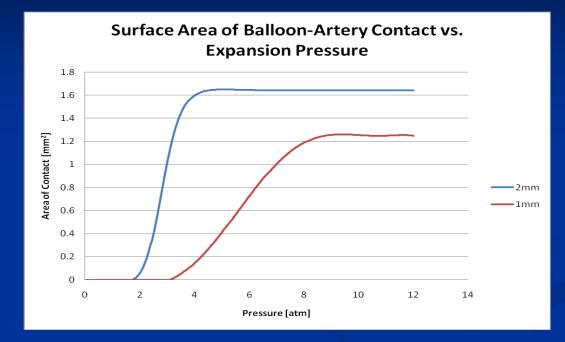


Results - Endflare

System at Point of Max Endflare

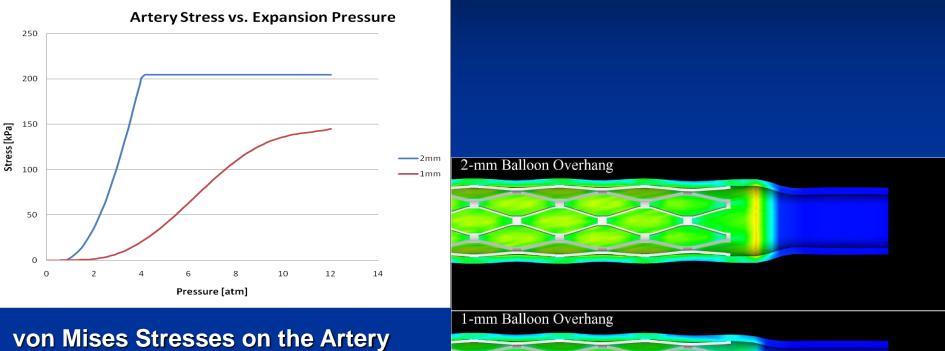
September 10, 2007

End of Expansion:


Increase in max endflare is 2% and increase in maximum arterial stress is 93% at balloon point of contact and 45% at point of contact with far proximal and distal ends of the stent

Raevon Pulliam

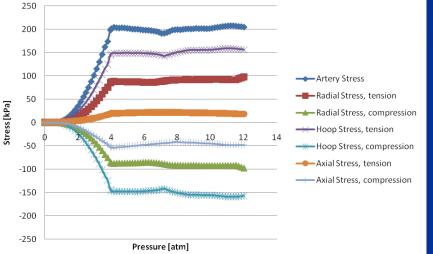
Results – Contact Area

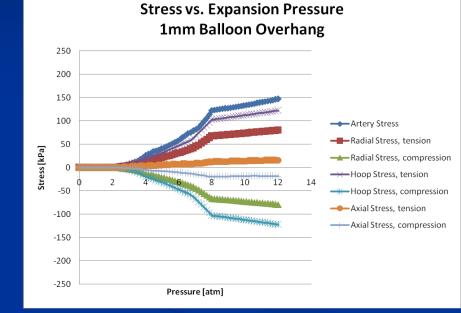

Larger balloon sizes cause higher balloonartery contact areas which may cause greater neointimal hyperplasia through increased surface-contact stresses

Raevon Pulliam

Results – Arterial Stress

Stress on Artery at End of Expansion




Raevon Pulliam

Directional Stresses

Stress vs. Expansion Pressure 2mm Balloon Overhang

September 10, 2007

Raevon Pulliam

Summary of Results

	1mm total balloon overhang	2mm total balloon overhang
Before expansion: artery blue stent light gray balloon dark gray		
Non-tapered balloon overhang highlighted		
Max endflare	25% @ 1 atm	29% @ 1 atm
Final endflare	2% @ 12 atm	4% @ 12 atm
Final max arterial stress	146.9 kPa	203.9 kPa
Final max arterial stress at balloon contact	103 kPa	199 kPa
Final max arterial stress at the <u>endflare</u>	96 kPa	139 kPa
Equivalent arterial stress (kPa) after full stent expansion. Balloon not shown. 0 125 225		

Raevon Pulliam

Modeling Conclusions

- Maximum arterial stress at balloon contact is approximately proportional to the degree of balloon overhang
- A 100% increase in balloon overhang results in a 4% increase in max endflare and a 39% change in peak arterial stress
- At the end of expansion, which is of most clinical importance, the increase in max endflare is 2% and the increase in max arterial stress is 93% at the balloon and 45% at the endflare

Raevon Pulliam

Clinical Significance

I really do not know what to do with these slides!!!!

This method permits determination of regions of endothelial cell (EC) denudation during stent implantation, which is clinically significant because:

- 1) Regions of EC denudation profoundly impact drug absorbtion/loading profiles of antiproliferative agents in drug-eluting stents (DES)
- 2) Anti-proliferative drugs are hypothesized to inhibit EC regrowth causing increased rates of long-term thrombosis, so predictive capability of regions of EC denudation during implantation provides the tool to reduce thrombosis rates of DES

Clinical Significance

Acute superficial and deep vascular injury has been found to be a strong predictor of chronic restenosis. This method provides a predictive tool to evaluate the degree of acute vascular injury of new stent geometries prior to animal studies.

Questions and Remarks

