
Laboratory 5: DFT Page 49

Laboratory 5: The Discrete Fourier Transform (DFT)

1. Objectives

 Learn how to compute and interpret the discrete Fourier Transform (DFT) of a DT signal

 Learn how to use the DFT to compute a very fast DTFT

 Gain real-world experience by examining the frequency distribution within a vocal recording

2. Introduction

In the previous lab you learned how the DTFT was the discrete-time version of the continuous-time

concept of the Fourier Transform. You discovered that it was periodic in 2π, and was typically plotted

over the region 0 to π, where the highest frequency (corresponding to a signal like [1 -1 1 -1]) occurs at

ω = π rads/sample. You ended by examining its use for analyzing the frequency content of a sampled

EKG waveform.

In this lab you will work with the Discrete Fourier Transform (DFT), which is the discrete-time version

of the continuous-time Fourier Series concept; it is not a continuous function of frequency like the DTFT,

but rather is a sequence itself, of the same length as its input. Unlike the DTFT, algorithms exist to

calculate the DFT in a blindingly fast manner, and as explored in this lab the DFT can be used to

approximate the DTFT to arbitrary precision. Recall the length of time it took to analyze the 2000 sample

EKG in the previous lab? With DFT's (and a little more programming effort) we cut the processing time

to less than 1% of our previous time.

3. Discrete Fourier Transform (DFT)

A. Definition of the DFT

 The N-point DFT of the a finite-length sequence x[n] defined for 0 n N-1 is given by:

1N

0n

N/kn2je]n[x]k[X

 Note the convention of using the variable n as the time-domain index and k as the frequency-

domain index.

 The N-point DFT X[k] of the signal x[n] defined for 0 n N-1 is simply the frequency samples

of its DTFT X(ejω) evaluated at N uniformly-spaced frequency points between 0 and 2π, or in

other words,

N/k2
j |)e(X]k[X

 The inverse DFT can reconstruct the time-domain signal x[n] from the frequency domain

sequence X[k] as follows:

1N

0k

N/kn2je]k[X]n[x

Laboratory 5: DFT Page 50

B. Intuition about the DFT

First, a common point of confusion: the name Discrete Time Fourier Transform, or DTFT, sounds almost

identical to the name Discrete Fourier Transform, or DFT. Some will cite historical reasons for this, but

I believe it's just because EE sounds harder than it really is. Because the names sound so similar,

practicing engineers never call them by the full names but instead just by the acronyms DTFT and DFT.

Remember the difference because the DTFT with the longer acronym generates an output much longer

than its input sequence length (its output is a continuous function of ω, even though only given a finite

number of data samples), but the DFT with the shorter acronym returns a frequency-domain data vector

exactly as long as its time-domain input sequence.

The DFT is the digital equivalent of the continuous-time Fourier Series coefficients, just as the DTFT is

the digital equivalent of the continuous-time Fourier Transform. Recall in EE230 that the Fourier Series

was used to analyze the frequency components of periodic signal x(t). If the signal x(t) had a period of

T (meaning it had a fundamental frequency of ωo = 2π/T), the trigonometric version of the Fourier Series

decomposition found the amount of sine and cosine waves that would create x(t). Specifically, it found

coefficients ak and bk that when multiplied by cos(kωot) and sin(kωot) summed to create x(t). Think of

it this way: the Fourier Series decomposition transformed a continuous-time signal to a discrete series

of coefficients a[k] and b[k].

In EE230 we also studied the complex exponential form of the Fourier Series decomposition, which

although less-intuitive than the trigonometric form of the Fourier Series, was simpler from the

perspective that it only generated a single sequence c[k] of coefficients representing the periodic

waveform x(t). Specifically, it generated a series of complex coefficients c[k] that when multiplied by

the complex exponential e-j2πω/T and summed over all k results in the original signal x(t).

To intuitively understand what the DFT looks like, realize these facts:

 It is as long as the input sequence. The DFT of x = [1 4 2] will be of length 3, although the

DTFT will be a continuous function of ω.

 It will be complex. The DFT of [1 4 2] is roughly [7 -2-j1.7 -2+j1.7]. Like the DTFT it is usually

graphed twice, once to show the magnitude and once to show the phase. The magnitude of the

above signal, for example, is about [7 2.6 2.6].

 The DFT is a sampled version of the DTFT. The magnitude of the DTFT of a random signal of

length 10 and the magnitude of the DFT of the same signal is shown in Figure 1 and 2 below.

Specifically, the sampling starts at ω = 0, continues every 2π/N where N is the signal length, and

thus the last number in the DFT (the at n=N-1) corresponds to the DTFT just before 2π frequency

(exactly, 2πN/(N-1)).

Figure 1: The DTFT and DFT of a random signal of length 10. Note that the DTFT is

continuous, and is plotted here as it varies between 0 and 2π. The DFT is discrete, the

same length of the signal, and is the sampled version of the DTFT. The DFT sample k

0 0.5 1 1.5 2
0

0.5

1

1.5

2

frequency

a
m

p
li
tu

d
e

DTFT of x[n]

0 2 4 6 8 10
0

0.5

1

1.5

2

frequency sample

a
m

p
li
tu

d
e

DFT of x[n]

Laboratory 5: DFT Page 51

corresponds to the DTFT frequency ω = 2πk/N, where N is the length of the signal. You

can select the frequencies of the DTFT that you wish to plot, since it is defined over all

values of ω (of course, it has a period of 2π). You cannot choose the frequencies of the

DFT to plot; a length N signal will have a length N DFT, corresponding to DTFT

frequencies from 0 to one sample less than 2π.

Figure 2: The DTFT and DFT of Figure 1 superimposed. Note that

there is no x-axis scale on this figure because it doesn't make sense

to have one; the DTFT is continuous from 0 to 2π and the DFT is

discrete from 0 to N-1. To create this plot I linspaced the DTFT

between 0 and 10 to force it to line up with the DFT.

 The first number of the DFT is the sum of x[n], which of course is proportional to x[n]'s DC

component. The index k in the DFT X[k] of length N corresponding to the highest frequency in the

time-domain signal x[n] is at k=1+N/2. If this number is fractional then the highest frequency

corresponds to that value of k both rounded up and down (e.g. if N=5, 1+N/2 = 3.5, so the highest

frequencies correspond to X(k=3) and X(k=4)). All this comes from the intuition that a typical DFT

magnitude will look like this X=[a b c d c b], where a is proportional to the zero frequency energy,

d is proportional to the highest-frequency energy at π, and b, c are evenly-spaced between these

extremes. Since the DTFT is symmetric around π, the DFT values after d are mirrored from the

indexes before it. As another example, X2=[a b c d e d c b], or X2 = [a b c d d c b]. In words this

is confusing; read it while looking at Figure 1 to make it intuitive.

 The benfits of zero padding. We said the DFT is just a sampled version of the DTFT. It is far

preferable computationally to compute the DFT using very fast commonly-available algorithms

such as the Fast Fourier Transform (FFT) algorithm, rather than the DTFT which takes far more

time to compute. How can we make the DFT more finely sample the DTFT to obtain finer

frequency resolution? Since the length of the signal and its DFT are the same, pad the end of the

signal with zeros. See Figure 3 for an example.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

frequency (either for DTFT or k for DFT)

a
m

p
li

tu
d

e

DTFT and DFT

Laboratory 5: DFT Page 52

Figure 3: Zero-padding x[n] to allow the DFT to more finely sample the DTFT. The left

panel shows the DTFT of a length 5 sequence x[n]. The center panel shows its length 5

DFT, which is a crude approximation to the true DTFT. The right panel shows the DTFT

of the x[n] padded with 20 additional zeros. In Matlab terms, if x = rand(1,5) the

center panel shows stem(abs(fft(x))), and the right panel shows stem(abs(fft(

[x zeros(1,20)]))).

 Parseval's Relation. Parseval's relation is a precise statement comparing the energy in a signal x[n]

to its DFT X[k]. If the signal is a sampled voltage connected to a 1 resistor then its power is x2[n]

(think P = IV = V2R). Just as in the continuous-time domain the total energy is the integral of the

power over all time, in the discrete-time domain the total energy is the sum of the power over all n.

So, the total energy in the signal is the sum of x2[n] over all n. Parseval's Relation intuitively states

that the total energy in a signal x[n] of length N is equal to N times the total energy in the DFT of

the signal, or in equation form,

1N

0n

1N

0k

22])k[X(N])n[x(

C. Matlab and the DFT: the command fft

 Matlab computes the DFT using fft. For example, to compute X[k] = the DFT of x[n], the

Matlab command would be X = fft(x). Recall that Matlab is case-sensitive, so that x and

X are two different variables.

 A potentially-confusing name: FFT vs. DFT. The DFT is the name of the transform; the FFT

is one algorithm used to compute the DFT. FFT stands for "Fast Fourier Transform", which is

too bad because it is an algorithm, not a transform in itself, and worse it doesn't compute the

Fourier Transform (which as we said was a continuous-time concept you learned in EE230) but

rather the DFT. Even worse, the folks at Matlab decided to call their DFT operation "FFT",

naming it after the algorithm rather than the operation. This is ECE.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

frequency

a
m

p
li
tu

d
e

DTFT of x[n]

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

frequency sample k

a
m

p
li
tu

d
e

DFT of x[n]

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

frequency sample k

a
m

p
li
tu

d
e

DFT of zero-padded x[n]

Laboratory 5: DFT Page 53

Problem 1: DFT

a. Write a Matlab program that takes a vector x and an integer N, zero-pads the end of x to make

it N long, and then computes its DFT (using Matlab's fft command). The first line should

look like:
 function X = Lab5_Prob1a(x, N)

 To test it, use x = [-1 2 1 -1] as data, and use the program to stem plot the magnitude of the DFT

of x after padding it to make it 10 long and again after padding to make it 50 long. The indexing

for DFT's always starts at 0. Use subplot to stem plot them in a single column of two rows.

Comment on the effect of the more extensive zero padding.

b. Challenge: Repeat part a, but this time compare the same sequence padded to length 5 with the

sequence padded to 50. Their relationship looks at first glance to be different than the

relationship between the sequences padded to 10 and 50 you found in part a. Explain.

D. Circular Shifting

 A circular shift is more easily shown by example than by definition. If the sequence x[n] that

begins at n=0 is {1, 2, 3, 4, 5, 6} is circularly-shifted to the right by 2, it remains beginning at

2 but becomes {5, 6, 1, 2, 3, 4}. The mathematical notation for this intuitively-obvious

operation is awkward:]2n[x
6

 , where the 6 signifies that we wrapped digits shifted beyond

the 6th place back to the zero index position. This means
N

n = n modulo N = n with however

many multiples of N removed from it so that it is between 0 and N-1. Again by example,

00
6
 , 11

6
 , 55

6
 , but 06

6
 (since it wraps around to become 0), 511

6
 ,

012
6
 , and 113

6
 .

 The N-point circular convolution of two length-N sequences x[n] and h[n], 0 n N-1, is

denoted by yc = x[n] h[n] and is defined by

1N

0m
Nc]mn[h]m[x]n[y

 where
N

n = n modulo N. That's the mathematical definition, but is far easier for a human to

compute: to create a N-length circular convolution, just take the linear convolution, and then

wrap the end to make it only N long. For example, if a linear convolution resulted in [1 2 3

4 5 6], to create a 4 point circular convolution, wrap the 5th position around to add the first,

and the 6th position around to add to the second, resulting in [1+5 2+6 3 4] = [6 8 3 4]. To

create an 8 point circular convolution, just zero pad to create [1 2 3 4 5 6 0 0]. It's important

to realize: linear convolution is usually what is desired, but using the DFT as described below,

circular convolution is what you get unless you zero pad (also described below).

 A fast way to circularly convolve two signals x[n] and h[n] using a computer is to compute

their DFT's, multiply them, and then compute the resulting inverse DFT, since multiplying in

the frequency domain is like convolving in the time domain. Although fast, it cannot be done

in real-time (you need to take the DFT of the full length signal x[n]).

 The fastest way possible to get the linear convolution y[n] = x[n]*h[n], where x is N samples

long and h is M samples long, is to

1) Pad the end of x[n] with M-1 zeros (to make the wrapped numbers in circular convolution

all zeros, therefore making it equivalent to linear convolution)

2) Similarly, pad the end h[n] with N-1 zeros. Now both x[n] and h[n] will be N+M-1 long.

3) Take the DFT of both, multiply together, and then take the IDFT.

*

Laboratory 5: DFT Page 54

 Matlab example: if x = [1 2] and h = [1 2 3],

 conv (x, h) is the same as
 ifft(fft([x 0 0]) .* fft([h 0]))

 but the ifft method is much faster. Entering the data by hand on a PC you won't notice the

difference; they each take less than a millisecond to compute. On a wireless networking

system that has to process 100Mbytes = 800Mbits of data each second in small data

packets, this difference is huge.

 The DFT has a number of useful properties frequently exploited in real-world applications. We

will explore the two most common properties in this lab: the circular time-shifting property and

the circular frequency-shifting property.

o Circular Time-Shift Property: If X[k] is a N-point DFT of a length-N sequence x[n], then

the N-point DFT of the circularly time-shifted sequence
N0]nn[x is

N/kn2j 0e]k[X

.

This should look vaguely familiar, since in EE230 you learned that time-shifting a

continuous signal x(t) to make it x(t-t0) was the same thing as multiplying the Fourier

transform of X(ejω) by 0t2j
e

.

o Circular Frequency-Shift Property: If X[k] is a N-point DFT of a length-N sequence x[n],

then the N-point DFT of the sequence
N/nk2j 0e]n[x

is the circularly frequency-shifted

sequence
N0]kk[X

Laboratory 5: DFT Page 55

Problem 2: Circular Shifting

The function below circularly shifts a signal. It is available on the course web page.

function y = circularshift(x,M)

% CIRCULARSHIFT circularly-shifts sequence x by M to the right

L = length(x);

M = rem(M,L);

if M < 0

 M = M + L;

end

y = [x(L-M+1:L) x(1:L-M)];

a. What is the purpose of the command rem in the function circularshift?

b. Explain how the function circularshift works.

The function below illustrates circular shifting. It uses the function circularshift developed above.

% Lab5_Prob2

% Illustration of Circular Shifting of a Sequence

%

clf;

M = 2;

a = 0:9;

b = circularshift(a,M);

L = length(a)-1;

n = 0:L;

%

subplot(2,1,1)

stem(n,a); axis([0,L,min(a),max(a)]);

title('Original Sequence')

%

subplot(2,1,2)

stem(n,b); axis([0,L,min(a),max(a)]);

str = sprintf('Sequence Circularly Shifted by %g Samples',M);

title(str)

c. What parameter determines the amount of time-shifting?

d. What happens if the amount of time-shift is greater than the sequence length?

e. What does the function sprintf do?

Laboratory 5: DFT Page 56

Problem 3: The Circular Time-Shifting Property of the DFT

The following script illustrates the effects of the DFT on a circularly time-shifted signal. Download

it from the EE431 homepage and run it. It uses the function circularshift developed in a previous

problem.

% Lab5_Prob3

% Circular Time-Shifting Property of the DFT

%

clf;

x = [-3 -2 -1 0 1 2 3 2 1 0 -1 -2]

n = 0:length(x)-1;

y = circularshift(x,1);

X = fft(x);

Y = fft(y);

%

subplot(3,2,1)

stem(n,x);

title('The Original Sequence')

%

subplot(3,2,2)

stem(n,y);

title('The Circularly-Shifted Sequence')

%

subplot(3,2,3)

stem(n,abs(X)); grid

ylabel('amplitude')

title('Magnitude DFT of Original Sequence')

%

subplot(3,2,4)

stem(n,abs(Y)); grid

ylabel('amplitude')

title('Magnitude of Circularly Shifted Sequence')

%

subplot(3,2,5)

stem(n,unwrap(angle((X)))*180/pi); grid

ylabel('phase (degrees)')

title('Phase DFT of Original Sequence')

%

subplot(3,2,6)

stem(n,unwrap(angle((Y)))*180/pi); grid

ylabel('phase (degrees)')

title('Phase of Circularly Shifted Sequence')

a. Run this program and include the plot. What amount of right circular time-shift is shown?

b. Comment/explain what the time-shift does to the signal's DFT.

c. Modify the program to run with a time-shift of -1. Comment/explain.

d. Challenge: Again, let x = [-3 -2 -1 0 1 2 3 2 1 0 -1 -2]. Why does a right shift of 1 appear to

leave many of the phase values of the DFT as zero? Why does a right shift of 2 appear to make

even more of the phase values equal to zero?

Laboratory 5: DFT Page 57

Problem 4: Circular Convolution using the DFT

Begin by analyzing the following Matlab function that finds the circular convolution of two

sequences, available on the course homepage.

function y = circularconv(x1,x2)

% CIRCULARCONV circularly-convolves sequences x1 and x2

L1 = length(x1); L2 = length(x2);

if L1 ~= L2, error('Sequences of unequal lengths'), end

y = zeros(1,L1);

x2tr = [x2(1) x2(L2:-1:2)];

for n=1:L1

 sh = circularshift(x2tr,n-1);

 h = x1.*sh;

 y(n) = sum(h);

end

a. What is the purpose of the ~= operator in the function circularconv?

b. Explain how the function circularconv works.

c. For the rest of this problem, let sequence x1 = [1 1 -1 1] and sequence x2 = [1 2 3 4]. Let y

equal the linear convolution of x1 and x2. Find y either by hand (using graphical methods) or

by using Matlab.

d. Using the function circularconv above, find the circular convolution of x1 and x2. Explain

how you could find the circular convolution directly if you knew the linear convolution you

found in part c.

e. Another way to find the circular convolution directly is to note that multiplication of DFT's in

the frequency domain is like circular convolution in the time domain. Compare your answer

from part d above with this: ifft(fft(x1) .* fft(x2)).

f. Challenge: Taking the DFT's of signals appears to be a needlessly complex way of doing

circular convolution; the function circularconv seems to be much simpler since it does not

involve complex exponentials. Which is faster? Create two signals x1 and x2 that each have

50,000 random elements and compare the length of time it takes to circularly convolve the two

using the circularconv function used in part a and the DFT method given in part e. To

create a long sequence of random numbers use the command rand. To measure the length of

time it takes to perform an action using circularconv or the fft method, use tic and

toc as follows:
 >> tic, circularconv(x1,x2); toc

 or
 >> tic, ifft(fft(x1) .* fft(x2)); toc

 Tic saves the system clock into a hidden global variable and toc reads that variable, compares

it with the current time, and displays the difference. Record how long it takes with each method,

and be prepared to be surprised. It may take a while for this program to run!

Laboratory 5: DFT Page 58

Problem 5: Linear Convolution using the DFT

Program Lab5_5 shows how one can compute linear convolution using DFTs by padding the end of

each input sequence with zeros so that the circular convolution of the DFT multiplication is

equivalent to linear convolution.

% Lab5_Prob5

% Linear Convolution Using the DFT

%

x = [1 2 3 4 5];

h = [2 2 0 1];

%

xPadded = [x zeros(1,length(h)-1)];

hPadded = [h zeros(1,length(x)-1)];

y = ifft(fft(xPadded) .* fft(hPadded));

y = real(y);

disp('Fast linear convolution using the DFT =')

disp(y)

disp('Slow direct linear convolution using conv =')

disp(conv(x,h))

a. Run the program. Does convolution using zero-padded DFT's produce exactly the same answer

as direct linear convolution?

b. Repeat the above for a different set of sequences for x and h.

c. Write a Matlab function called fastconv that takes two sequences and returns their linear

convolution using DFTs (it does exactly what the built-in function conv does, but in a much

faster manner by using DFTs). Use the script given above to guide you. The first line should

be
 function y = fastconv(x, h)

d. Challenge: Are there reasons why Matlab does not use this faster method of convolution?

Problem 6: DTFT and DFT problem

Let x = [1 2 3 4 3 2]. In a single-column four-row subplot, plot its DTFT over 0 ω 2π, its DFT

using stem, the DFT of the signal replicated 10 times (e.g. [x x x…]), and the DFT of x with 60

zeros after it. Comment on the results.

Laboratory 5: DFT Page 59

4. Real-World Problems – Extract A Pitch From A Vocal Recording

Music formats

There are two fundamentally different ways to record music: as a sampling of the time-varying sound

pressure sensed by a microphone (e.g. CD recordings, WAV files, MP3's) or as a list of sound events

where each event has an on-time, off-time, pitch, and sound type associated with it (e.g. sheet music,

MIDI files, electronically-generated music). These two ways are analogous to the difference between a

.jpg picture of a handwritten letter and a Word document containing the letter's text. The .jpg can reveal

subtle nuances in the way the handwriting was printed, but takes a huge amount of room and except for

cropping or amplitude scaling can't be edited. The text file can be easily edited, but its regular typefaces

can't capture the way that a handwritten letter reflects the mood of the writer. Similarly, an MP3 can

perfectly capture the performance, but cannot be edited beyond simple cropping or sound scaling.

Sheet music is the standard way that musicians record compositions (Figure 4). It is comparatively easy

to play an instrument from sheet music (not necessarily play well, but play accurately), but quite difficult

to do the reverse: create sheet music after hearing a melody. A program that could hear a sound

recording, for instance in a WAV file, and determine the MIDI or sheet music representation of the song,

would enable a powerful set of new software applications that could, for instance

1) allow anyone to compose their own melodies in sheet-music form by humming into a microphone

2) allow anyone to create sheet music from a CD recording

3) permit truly incredible compression of instrumental recordings. For example the music in Figure 4

takes 5 seconds to play. Using MP3 compression at a fixed rate of 128kb/s this would take 640kb to

store. The GIF image of the sheet music took only 13kbytes to store. A MIDI file that records the

frequency and on/off times of each note for these bars takes only 215 bytes to store…a savings of about

3000x over MP3 format, or about 30,000x over WAV files!

Figure 4: The opening two bars of Mozart's Sonata in C. The vertical axis corresponds to

frequency and the horizontal axis corresponds to time. The shape of the note indicates how

long it is held. Since there are two staves of music, two different notes play at once. This

representation needs an additional specifier to let the musician know what instrument should

reproduce the sounds; as written it could be the piano, a violin, or a tuba.

This section of the lab will have you tackle a subset of this problem: you will use the DFT to determine

the DTFT of a note you will sing, and from that determine what pitch it was that you sang. The problem

is stated at the end of the section, after the software you will need to use is introduced.

Laboratory 5: DFT Page 60

Music Theory from an Engineer's Perspective

Music is written with 12 unique notes, increasing in frequency as follows: A, A#, B, C, C#, D, D#, E, F, F#,

G, G#. The first A is defined to occur at 440Hz. After G#, the scale wraps to start again at A, this time at

exactly twice the frequency, or 880Hz. We differentiate between these two A's by calling the first A440 and

the second A880. The frequency ratio between each note is a constant k, and to have 12 geometrically-

increasing intervals fit in a span of 2, k must equal the 12th root of 2, or k = 1.059463. For instance, since

A440 is defined to occur at 440Hz, the next note A# must occur at 440 * k = 466.2 Hz, and B occurs at 440

* k * k = 493.9 Hz. A880 could have been determined directly by calculating 440 * k * k * (for all 12 notes)

= 440 * k^12 = 880.

The notes are circularly wrapped in that as you continue up the scale, after the upper A at 880Hz, the next

note is A# at 880 * k = 932.4 Hz, and similarly the next B occurs at 880 * k * k = 987.8 Hz. Each note

occurs again at double and half frequencies; this span of frequency is called an "octave". One could also

have derived the A# an octave above the already-calculated A#466.2 note to be: 466.2 * 2 = 932.4 Hz, or

similarly the higher B as 493.9 * 2 = 987.8 Hz.

Notes also circularly wrap downwards on the scale. The A one octave below A440 occurs at 220Hz. Just as

A# above A220 occurs at 220*k, the note below A220, a G#, occurs at 220/k = 207.7 Hz.

Example: What note is 60Hz powerline noise? The A one octave below 220 is 110, and an octave below

that is 55. One note above A55 is 55*k = 58.3, and two notes above is 55*k^2 = 61.7Hz. Powerline noise

is therefore by chance exactly in between the notes A#58.3 and B61.7, guaranteeing that no matter what key

music is written in, powerline hum will sound highly irritating.

To Record Your Voice To A Matlab Array

Use a Matlab audiorecorder object.

1. Create an instance of the audiorecorder and define the sampling frequency, bit depth, and number of

channels. For this lab, use a sampling frequency of 22050 Hz, which is a fairly standard frequency for

radio-quality sound. Bit depth refers to how many bits are used to store each sample; a 16 bit depth is

standard for CD quality. Channels means number of microphones, and can be 1 for mono, 2 for stereo,

or 5 or more for surround, and then one will record 1, 2, 5, etc. simultaneous vectors of data, one per

microphone.

 recordObject = audiorecorder(22050, 16, 1);

2. Tell Matlab to record 5 seconds of data. To let you know that Matlab is starting and stopping, include

disp(‘’) commands.

 disp(‘Recording session starting’)

 recordblocking(recordObject, 5);

 disp(‘Recording session ending’);

3. Extract the data stored in the audiorecorder object to a vector (or if multiple channels are recorded, into

a matrix).

 v = getaudiodata(recordObject);

4. Listen to the sound

 sound(v, 22050); % data vector, then sample frequency

Laboratory 5: DFT Page 61

To Read a WAV File Into Matlab

1. If the wav file is called Filename.wav, you can read it into Matlab as a vector with the command
 [x, Fs] = audioread('Filename.wav');

 The wav file will be stored in vector x and the sampling frequency in scalar Fs.

2. To hear the wav file, recall from Lab 3 that you can use the command
 sound(x, Fs)

An Improved DTFT Program

The Lab4_DTFT program you used in the previous lab is too slow to use in this exercise. It took several

seconds to analyze a 2,000 sample signal; for this project you will record about a one second length (about

22,000 samples). Since the Lab4_DTFT uses an order N2 algorithm, this increase in size of a factor of about

10 will cause it to require 100 times the processing time, all for a single second of sound. To analyze an

entire song this way would be impractical. The new method, which we will call simply DTFT and is available

on the course webpage, uses the fast DFT to finely-sample the DTFT. The DFT is implemented using the

Fast Fourier Transform (FFT) algorithm, which is order N log2(N). For very short sequences of about length

8, both the direct DTFT method of Lab 4 and the DFT method using the FFT take about the same length of

time to analyze. A 1.2 second WAV recording that is 32,000 samples long, or 4,000 times longer, will take

the DTFT 16,000,000 times as long to analyze, but the DFT only 4·103log2(4·103) ≈ 50,000 as long, which

is over 300 times faster than the direct DTFT method! In practice, this means the DFT can process a 32,000

length sequence well under a second.

The provided program computes at least 1001 samples of the DTFT using the DFT for speed. It first zero

pads the end of short input signals to ensure they are at least 1001 in length. It then adds an extra 0 to the

end of even-length sequences to ensure the resulting DFT has an odd number of digits to guarantee that the

the (L+1)/2 index of the DFT will be exactly the π sample of the DTFT. This is important because the DFT

always samples the DTFT from 0 to 2π, and we only want to sample it from 0 to the highest discrete frequency

of π. To accomplish this we simply remove the upper half of both the frequency vector and the DFT vector.

Lastly, the function changes the frequency vector from the discrete frequency 0 to π to the continuous

frequency 0 to Fs/2, where Fs is the sampling frequency. You may find use for this program in industry or

graduate school; it is quite useful.

Laboratory 5: DFT Page 62

function [w,X]=dtft(x,Fs)

% DTFT samples the DTFT of a sequence or sampled signal using a DFT

% [w,X]=dtft(x) returns the dtft of x at the frequencies w

% [f,X]=dtft(x,Fs) returns the DTFT of x sampled at Fs.

% If no output arguments are requested, it plots the result

if nargin==1 % If only 1 input argument (ie not sampled)

 Fs=2*pi; % 2pi is the highest digital signal frequency

end

% zero pad x if needed to make it long enough

x = x(:)'; % guarantee it is a row vector

L=length(x);

if length(x)<1001 % guarantee it is at least 1001 long

 x = [x zeros(1,1001-L)];

end

L=length(x);

if rem(L,2)==0 % guarantee it is an odd length

 x = [x 0];

end

L=length(x);

% take fft of x and drop the high freq mirror symmetry part

X1 = fft(x);

X1((L+1)/2+1:end)=[];

% make the appropriate omega vector

omega = linspace(0,Fs*(L-1)/L,L);

omega((L+1)/2+1:end)=[];

% if no output requested, plot it

if nargout == 0

 plot(omega, abs(X1))

 xlabel('frequency')

 ylabel('amplitude')

 title('magnitude of the DTFT of x[n]')

 figure(gcf)

else % pass the result to the output variables

 w = omega;

 X = X1;

end

Laboratory 5: DFT Page 63

Problem 7: Identifying musical pitch in sound recordings

a. Create about a one-second .WAV recording of you singing the vowel sound "ahhh" at a comfortable

speaking frequency. Crop it as needed to remove any unwanted noise from the start or end of the

recording, and compute its DTFT using the above program. Most of the useful information is contained

in the lower-frequency part of the graph; zoom in until you see the fundamental and the next four

harmonics (the upper frequency will be in the 400Hz – 1kHz range depending on the note you sung) and

print the result.

b. Do you see 60Hz noise contamination? (You may need to zoom in or out to see 60Hz). What is your

signal to noise ratio in dB, where the "signal" of interest is the amplitude of the fundamental frequency

of your voice? How many harmonics of the 60Hz noise do you observe (if any)?

c. What is the fundamental frequency of your note? Zoom as needed to get a precise reading. What is the

musical note name?

d. Vowels are strongly periodic, and fairly sinusoidal in appearance; this is why they have such strong

fundamental frequencies and clear harmonics. Consonant sounds such as "sh" are very different; they

sound like white noise (listen to yourself say "shhhh"). True white noise has a flat magnitude spectra

across all frequencies (the opposite of the magnitude spectra of a sine wave); when we say "shhhh" our

oral cavity makes a band-pass filter that limits the frequency to a high-frequency band centered

somewhere between typically 1kHz and 5kHz. The lack of harmonics indicates the sound is white noise,

and not periodic; it has no tone. Analyze a one-second recording of yourself saying "shhhhh" and plot

its magnitude spectrum, zoomed to show its sound energy. Identify the approximate low and high cutoff

frequency limits of your mouth's bandpass filter.

 e. Challenge: Write an m-file that, given a 1 second recording at the sampling frequency you worked with,

could identify whether the sound is a consonant "sh" or a vowel "ahh". Have it take as an argument the

vector sound file and sampling frequency, and display to the screen whether or not it is a vowel or

consonant. (Hint: Some of your approaches may require the command find, from an earlier lab, to

help with indexing).

Laboratory 5: DFT Page 64

5. Matlab Commands Used in Laboratory 5

Extracting parts of complex signals

abs(X) returns the magnitude of complex signal X

angle(X) returns the phase angle of complex signal X

unwrap(angle(X)) returns the phase angle of X, "unwrapped" so that as a complex number

travels smoothly counterclockwise around the complex plane, rather than

having the phase suddenly jump from 1179.9 to 1-179.9 it is

unwrapped to go from 179.9 to 180.1.

real(X) returns the real part of complex signal X

imag(X) returns the imaginary part of complex signal X

General Matlab commands

sprintf combines numbers and text into a single string, e.g. title(sprintf('%g

samples',n)) creates a title reading "5 samples" if n=5.

tic, <operation>,toc returns the time in seconds needed to do the operation. For example, try

tic, fft(rand(100)); toc

rand(n,m) create an n row m column matrix of random numbers, uniformly distributed

between 0 and 1

Sound commands

[x,Fs] = audioread('filename.wav') reads a wav file and stores the samples in x and the sampling

frequency in Fs

sound(x,Fs) plays the sound sampled in x at sampling frequency Fs

