
Digital Signal Processing
EE431

Virginia Military Institute

Student Laboratory Manual

James C. Squire, P.E., Ph.D. 1 August, 2014

0 2 4 6 8 10 12 14 16
0

5

10

15
x 10

6

Frequency (Hz)

a
m

p
li
tu

d
e

EKG Magnitude Spectrum

 Page 1

 Page 2

Table of Contents

Laboratory 1 ... 5

Laboratory 2 ... 15

Laboratory 3 ... 27

Laboratory 4 ... 37

Laboratory 5 ... 49

Laboratory 6 ... 65

Notes ... 69

 Page 3

Note to students

I wrote these laboratories because I could not find an "ideal" laboratory manual in the roughly twenty

currently published. Most were very abstract and involved neither programming nor practical application;

although this purely mathematical treatment serves as a good preparation for graduate school it is nearly

useless as a preparation for industry. Others stressed practical applications in a "cookbook" manner. These

typically provided pre-written software that solved a particular problem. Although the programs worked as

advertised, they did a poor job of teaching how and why the algorithms worked, and so did not prepare

graduates how to modify them to solve different problems they may encounter. The treatment I follow is a

mixture; the first part of the labs are typically theoretic and provide solid preparation should you decide to

later attend graduate school. The last section of most of the laboratories provides a real-world, common

problem that can be solved using the techniques you learned in the earlier sections. Problems are given

throughout the laboratory in bolded boxes, immediately following the section that describes their solution

method.

In addition to the standard problems in each laboratory, there are also a series of Challenge problems.

These are typically much harder, include less detail, and further develop an aspect of a solution technique

introduced in the laboratory. These problems are designed to provide a significant challenge in sections for

which you feel completely comfortable. In a sense, this entire course as an upper level course synthesizing

elements from advanced applied mathematics and practical engineering is a "challenge problem"; do not

feel compelled to work the problems identified as "Challenge problems" unless you feel bored with the

regular problems before them; however the highest possible grades will go to the students that can solve

them all.

Writing laboratory reports is traditionally a bugbear of engineering students. They can easily take the same

time as that required for the laboratory, but depending on the format can be very tedious to author. In my

past laboratories you have had to complete reports in a standard Objectives / Procedure / Data / Discussion

/ Conclusions format that mirrors professional papers you will write in industry, journals in graduate

school, and the somewhat arbitrary format it enforces is not unlike that of the Operations Order for those

commissioning. You will be happy to know that you will not need to adhere to such a format for this

course. Because of the amount of material you will cover in these labs, I have developed a fill-in-the-

blanks report available on the course webpage for every lab except the individual project lab. You will find

these tremendous time-savers. You will need them.

Although I worked every problem in these labs there is still likely to be mistakes, misspellings, and areas

that could be written more clearly. I welcome all your comments that will help make this laboratory

manual a useful reference for the rest of your engineering careers.

 Page 4

Laboratory 1: Matlab Review

1. Objectives

 Review basic Matlab commands, both for scalars and vectors

 Review how to perform complex arithmetic in Matlab

 Review how to plot complex-valued results

 Review the differences between scripts and functions

 Improve programming skills

2. Introduction

A. Background

 Matlab is the de facto standard tool in both academia and industry for developing and testing new

DSP algorithms. It is only slightly less fast than highly-optimized C code, and much faster than C

to design, debug, and view. Industry typically uses Matlab to develop and test new algorithms,

and then selects a cheap microcontroller, dedicated DSP chip, or FPGA to implement the

algorithms (a cellphone attached to a PC running Matlab would not sell well). A DSP chip is

nearly identical to a microcontroller, but with additional features that lend it to specific DSP tasks

(such as having a dedicated multiply-add instruction which are used in filtering signals, and

having large dedicated input/output buffers to accept and output streaming signals).

 Lately, industry has begun using Matlab in applications for Hardware-In-The-Loop Development.

This refers to starting a design purely using simulation, and gradually adding real-hardware blocks

to the simulation until the hardware has completely replaced the simulation blocks and the system

is designed. An example is Sparta’s recently developed Javelin II shoulder-launched self-guided

anti-tank weapon. At first the weapon was simulated using one program that modeled the

dynamics of the rocket engine (it took a stream of steering and thrust parameters and output a

stream of location information), another that modeled the sensors (it took a stream of actual

location information and output a stream of simulated GPS coordinates and simulated video

images), and a third program that modeled the control algorithm (it took the stream of sensor

information and output a stream of steering and thrust parameters for the rocket engine). Each

was modeled in Matlab, and connected together. Next, the actual rocket engine was built and

mounted on a test stand, and put in the place of the simulated rocket engine. Real sensors

measuring engine thrust were next added, replacing the simulated sensors. Finally, the control

algorithm was fine-tuned, placed within an FPGA, and connected to the completed system.

 When you leave this course, you will be very proficient in Matlab, and ready to tackle any

graduate-level DSP course (should you take that path), or industry development tasking.

B. Laboratory administration

1) Help received
 All laboratories will be worked in teams of two students. There may be at most a single team

of 3 or an individual working alone if there are an odd number of students. Except as noted

below, help received outside the lab team is not authorized and will result in a 50% deduction

to every section in which help received is indicated (help received not relevant to completing

 Page 5

specific problems, such as how to start Matlab, is fine). You don't need to document help

received by your lab partner, by the instructor, by the help system incorporated into Matlab,

or the Mathworks website.

2) Lab Report
 To make your work more efficient and allow you to complete more DSP learning in our

allotted lab time, I have prepared an outline report for each of your labs. You may download

it from my website at http://www.jimsquire.com. Most of the material can be simply cut-and-

pasted in directly from your Matlab session. You don't need to add connecting text; if I want

an essay type response I will specifically ask for it. Only one lab report per team needs to be

completed. Share the work evenly; at the end of the course I will ask you to evaluate how

well you and your lab partner shared the workload, and this will influence 15% of your lab

grade.

3) Attendance
 At this point in your career, I trust you to control your time schedule. You may do as much or

as little of the work for each lab as you desire during the scheduled lab time. I have

everything posted on the web, so should you desire to do them the night before, come in, hand

me your report, and leave, that is fine. Similarly you may leave and do the lab later on your

own. I discourage this, since you are not authorized to receive help from outside your lab

team and I can assist your team during lab in ways that can save you substantial amounts of

time. Still, I understand you juggle many responsibilities and that occasionally other issues

will take priority, and I respect your judgment.

3. Laboratory

1. Login and start Matlab

2. Create a data folder structure
 You should create a new data folder for this course and under it a new folder for this laboratory,

and make it Matlab’s current working directory. The current working directory is the directory in

which Matlab expects to find the user’s functions (i.e. m-files) and scripts.

a) Locate the Current Directory type-in box in the toolbar at the top of the Matlab main window

b) Navigate to your personal directory on the network.

c) Inside your personal directory, create a new subfolder called EE431 (don’t use a space).

d) Inside that folder, create a subdirectory called Lab1 (with no space).

e) Note that the Current Directory type-in box in the toolbar now points to your Lab1 working

directory.

3. Evaluating Complex Variables and Expressions
Examples:

z = 3 + j*6 % creates complex variable z. Multiplication must be made explicit with a * symbol.

z = j*exp(4) % replaces variable z with the number je
4
.

z = 2^8; % now z is set equal to 256.

real(z) % returns the real part of z

imag(z) % returns the imaginary part of z

abs(z) % returns the magnitude of complex variable z

angle(z) % returns the angle of complex variable z in radians. You must multiply by

180/π to get degrees.

pi % returns 3.14159

log(4) % returns the natural log of 4, ie what is usually typeset as ln(4)

log10(4) % returns the base-10 log of 4, ie what is usually typeset as log(4)

 Page 6

Note: Frequently in the labs I give examples such as those above. You do not need to enter them;

your lab reports will consist only of the boxed problems such as the one below. You may find it

helpful to enter and play around with some of the more complicated commands.

Note: Know what matrix (including vector) multiplication means. [1 2] * [3 4] gives an error

since matrix multiplication is only defined when the number of columns of the first matrix (here 2)

equals the number of rows of the second (here 1). [1 2] * [3; 4] (where the semicolon means

“start a new row”) is defined (since 2 = 2) and gives a matrix answer with the number of rows of

the first number (1) and the number of columns of the second number (also 1)…it gives a single

number answer of 1*3 + 2*4 = 11. If you want the answer [1*3 2*4] = [3 8] then prefix the *

sign with a period, like this: [1 2] .* [3 4] = [3 8].

Yet another note: In Word you may occasionally want to use a mathematical or Greek symbols

like 2 ± 0.3 or 4  34 or δ[n]. You can find them all in the Symbol font. Choose Insert, Symbol,

and change the font to Symbol.

Problem 1

Express each of the following complex numbers in rectangular form using Matlab:

a) j e
j 11 π / 4

b) (1-j)
10

Problem 2
Express each of the following complex numbers in magnitude/angle form in radians using Matlab:

a) j e
j 11 π / 4

b) 3 + j6

4. Creating and plotting vectors and matrices

Examples

v = 1:10; % shorthand for saying v = [1 2 3 4 5 6 7 8 9 10];

v = 0:0.1:5; % creates the vector [0 0.1 0.2 0.3…4.8 4.9 5]

v = linspace(0,2,50); % creates a vector of 50 points, linearly spaced between 0 and 2

m = zeros(4,5); % creates a matrix of zeros that is 4 rows by 5 columns

v = ones(1,10); % creates a column vector of ones that is 10 long.

plot(x,y); % plots x vs. y using lines to join the {x,y} point locations

plot(x,y,'.'); % plots a single point at each {x,y} location

title, xlabel, ylabel % labels the plot

To insert a plot figure into a Word document, from the figure's menu choose Edit  Copy Figure;

then cut and paste into Word.

To plot the equation y = x/2 * cos(x) between 0 and 5

a) First create the x vector with enough points to give a smooth plot
 x = linspace(0,5,100);

b) Next, find y at each point location x
 y = x ./ 2 .* cos(x);

 Note 1: when working with vectors you must use .+, .-, .*, ./, and .^ for element-by-element

add, subtract, multiply, divide, and raise to a power.

 Note 2: cos(v), sin(v), tan(v), exp(v), log(v), and log10(v) work fine for scalar, vector, or

matrix arguments.

c) Plot it using plot(x,y)

 Note 1: You can specify the color of the plot using plot (x,y,'r'), where r is red, b is blue, k is

black, and g is green

 Page 7

 Note 2: You can specify the line style of the plot using plot(x,y,'b-') for a solid blue line, 'r--'

for a dashed red line, or 'g:' for a dotted green line. plot(x,y, 'b.') plots a single blue dot at the

location of each x,y pair and does not join x,y pairs by a line of dots, unlike the other line

styles.

Problem 3: Plot y = real part of (e
 j x π

)

as x varies between 0 and 5. Neatly label the plot.

5. Saving and loading variables

First, copy the data files for this lab to your working directory.

a) Open a web browser and point it to my home page (www.jimsquire.com).

b) Navigate to the EE431 course page (Teaching  EE431)

c) Under the “Lab” section, right-click each data file and save it to the current working Matlab

directory. This time there is only a single file called Lab1.mat; just download this one.

 You can see what variables are currently defined by typing
whos

 You can also see the variables on the Workspace window that is usually to the left of the main

Command window. Notice that not only the defined variables are listed, but also what size they

are. Type it now.

 You can load and save variables (for instance variables x and y) used by Matlab to a file (for

instance, myfilename) using the command (note: no commas)
save myfilename x y

 Matlab will create a single file called myfilename.mat that will hold x and y. Note the .mat

extension is automatically added, and that the syntax is the same regardless of whether x and y are

scalars, vectors, or matrices. Also note that the file created is not an ASCII file readable by, say,

Notepad; the variables are stored in a compressed form. You can also store variables in ASCII

form, perhaps to be read by an external program; see help save for details.

 The word "workspace" refers to all the variables currently defined by Matlab. After working for a

while it is easy to get confused by the number of variables you have defined and you may desire to

clear some of them. To clear variables x and y, for instance, type
clear x y

 Now type whos to see the effects.

 To quickly clear all of the variables in the workspace, type
clear

 by itself. Do this now, and then type whos to see the effects.

 To load variables from a file, type
load myfilename

 The .mat extension is optional. Do this now to load the file Lab1.mat that you earlier copied from

my homepage. You can also read in an ASCII text file; see help load for details.

Problem 4

Using the above commands, determine the variable names I have stored in Lab1.mat.

http://www.jamessquire.net/

 Page 8

6. Accessing vectors and matrices

To set scalar variable N to the length of vector v, type
N = length(v);

You could see if the vector was a row vector or column vector by typing
[nrow, ncol] = size(v)

For a row vector, ncol will be 1; for a column vector, nrow will be 1. The function length

discussed above actually calls size and returns either nrow or ncol, whichever isn't 1.

 Although one can multiply an entire vector v by 2 by saying v1 = v.*2; it is not always desirable

to access an entire vector or matrix at once. To multiply the third element of vector v by 2, you

instead type

 v(3) = v(3) * 2; % you don't need to type .* since both v(3) and 2 are scalars

 To add one to elements 4 through 8 of vector v1, type
 v1([4:8]) = v1([4:8]) + 1;

 To set elements 3, 5, and 9 of vector v2 to zero, type
 v2([3 5 9]) = 0;

To remove elements 3, 5, and 9, type

v2([3 5 9]) = []; % this is probably the first time you've seen this trick!

To multiply all the elements of v3 by 5 except the first two, type

v3 = v3(3:end) * 5; % note that here "end" means "end of the vector"

 % also, you don't need .* since one variable is a scalar

You can combine the above ideas with what you know about creating vectors

v4(1:2:end) = []; % removes the 1, 3, 5, etc. entries in vector v4

Unlike vectors that just have a length, matrices have both a number of rows and columns. Use

size to determine this:

[nrow, ncol] = size(m);

Accessing matrix elements is similar, but using row, column format

m(4,5) = m(4,5) + 1; % adds 1 to row 4, column 5 of matrix m

m([1:2], [end-1:end]) = 0; % sets the 4 elements of m that are in the first two

rows and last two columns to zero

One trick with matrices is to use a colon to represent all the rows or all the columns

m(:,2) = []; % this deletes the second column (and all the rows) of matrix m

m([1 3],:) = 0 % sets the first and third rows of m (and all the columns) to zero.

You can transpose a matrix (i.e. make 3x5 matrix a 5x3 matrix) using the transpose operator '.
m'

This also works to convert a row vector into a column vector or a column vector into a row vector
v'

 If you attempt to set part of a matrix or vector (e.g. m([1:2],[1:2]) for the upper-left 4 elements) to

a different-sized matrix or vector (e.g. m([1:2],[1:2]) = [1 2 3 4 5]) then you will generate an

error message
In an assignment A = B, the number of columns in B and number of

elements in B must be the same.

 Page 9

Problem 5
Clear your workspace and reload the variables from the Lab1.mat file. Determine the command

necessary to replace the third column of matrix m with the vector v5, and display the result.

You can also access vectors and matrices within a loop. For example, enter the following code at

the Matlab prompt pressing the return key after each line:
>> x = 3 * 0:0.2:5 + 2;

>> for i = 1:length(x)-1

y(i) = x(i+2);

end

>>

Note 1: Loops are usually used within m-files. When it is entered at the command line, Matlab

will wait to execute it until the end command is typed.

Note 2: This could be better done without a loop by typing y = x(2:end)

7. Writing scripts and m-files

a) Scripts
 Scripts are not programs, but just collections of commands that are run in a batch, just as if they were

executed at the command window, but saved as a file with a .m extension. Scripts are evil, but m-files

(also known as functions) are good. Here is why: say you saved the following script as MyScript.m:

 degF = input ('What is the temperature in degrees Fahrenheit?');

degC = 5/9*(degF-32);

disp(sprintf('The temperature is %g degrees Celsius', degC));

 The commands disp and sprintf are new. Disp simply displays a value to the screen without

assigning it to default variable ans; type disp(4) and compare this to what happens when you just type 4

(and press the return key). sprintf creates a string that has embedded variables replace each instance

of %g.

 Now, if you type MyScript at the Matlab command prompt, the script will prompt you to enter a

number, and will then display a different number on the screen. If you check your variables kept in

memory after this by typing whos at the command prompt, you'll discover that both degF and degC are

still taking up memory space. Worse, you can't call MyScript as you could a function such as y = sin(4)

where the input argument 4 is passed to function sin, which then returns a number to y -- i.e. you can't say

y = MyScript(70). Don't use scripts; m-files (i.e. functions) can do everything scripts can, and more.

b) M-file example 1
 Best illustrated with an example, this is an m-file that extracts the last L elements from a vector x

function y = GetLast(x, L)

%GetLast returns the last L elements of vector x

% usage:

% y = GetLast(x, L)

% where:

% x = input vector

% L = number of last elements to retrieve

% y = output vector

N = length(x);

if (L > N)

 error('input vector too short!')

end

y = x((N-L+1) : N);

 Page 10

This file should be saved as GetLast.m and may be invoked from the Matlab command prompt by typing
test = GetLast(1:2:19, 3);

then variable test will hold the vector [15 17 19]

 Now if you check out the variables that are currently defined using whos you will not see the variables x,

L, y, or N. These were all temporary variables created when the function ran and were deleted when the

function finished. Only the value test remains. This both clears up memory and more importantly

prevents a function from accidentally overwriting a variable you have set.

c) M-file example 2
 This m-file takes a data vector, and checks each value to make sure it is not less than zero. If it is, it sets it

to zero. This simulates how a microcontroller, unlike a PC, usually cannot represent numbers less than 0.

The m-file returns two vectors, the data output vector that has negative values set to zero and a sample

number vector called index to make plotting easier.

function [y,index] = MicroSim(x)

% MicroSim replaces negative entries in a vector to zero

% usage:

% [y,index] = MicroSim(x)

% where

% x = input vector

% y = output vector

% index hold the sample number. E.g. plot result using plot(index, y)

% setup

[nrows, ncols] = size(x);

y = x; % create the output vector

% error checking

if (ncols ~= 1 & nrows ~= 1)

 error('input to MicroSim must be a vector!')

end

L = max([nrows ncols]); % length of input vector; same as length(x)

for n=1:L % loop over the entire vector

 if y(n) < 0 % if its negative, make it equal to zero

 y(n) = 0;

 end

end

index = 1:L; % make the index vector

 This file should be saved as MicroSim.m. If called using the vector data = [-6 -1 0 5.2

845.9]; as follows:
 [y, index] = MicroSim(data);

 then y will equal [0 0 0 5 846], and index will equal [1 2 3 4 5].

 Page 11

Problem 6

A more accurate simulation of a microcontroller's limitations would include the fact that

microcontrollers typically can only work with integers (not real numbers) and furthermore that the

integers must be between 0 and 255. Modify the above program to do this, e.g. so that the given

example above will return a y of [0 0 0 5 255]. To speed development, you can download the

original MicroSim.m file from the course website. Test it using the test vector [-6 -1 0 5.2 845.9]

to make sure it returns both the proper data and index.

8. Comprehension problems

Problem 7

Use Matlab to compute
)2j3)(7j1(

)5j1)(5j2(




and express your answer in polar (magnitude and angle in

degrees) format. Include your commands to do so.

Problem 8

Create a vector t that contains 100 values linearly varying from 0 to 8π. Let
t*je*)]t*25.2cos(1[z  . Plot the real and imaginary parts of z as the x and y coordinates,

respectively. Use axis equal after plotting to make circles look like circles rather than ellipses.

Comment on why the graph looks like hinged lines with slopes that suddenly change (surprising since

the functions that compose it all have continuous derivatives), and what you can do to make the plot

appear as smooth as it actually should be. (Problem with errors? Re-read the Laboratory Part 3

section, subparts 4 and 5).

Problem 9

Write a function shorten that removes every other element from an arbitrary length vector, creating a

shorter vector made of only the odd-numbered elements of the original vector, and a function lengthen

that creates a longer vector by adding an additional element between neighboring elements in the

original vector. Each new element should equal the average of its neighboring elements. Test your

solution by applying shorten and then lengthen to the vector x = [0 2 3 2 1]. What happens when

you execute lengthen(shorten(x))? What happens when you execute shorten(lengthen(x))?

Note 1: although both of these are tough, lengthen in particular is quite challenging.

Note 2: partial credit is awarded if you complete the programs using loops. Full credit is given if you

can use the faster (and that uses less code) vector accessing notation. For more information, see the

information in tutorial part 6, e.g. looping

for i=1:2:length(x)

x(i)=4;

end

to set every other value of a vector to 4, vs. the faster one-line equivalent of

x[1:2:length(x)] = 4.

 Page 12

4. Matlab Commands Used in Laboratory 1

Workspace commands

clear x y z clears the definitions of variables x, y, and z

save test x y saves the variables x and y in a file called test.mat

load test loads all the variables stored in the test.mat file

whos determines what variables are defined

Mathematical functions

real(z), imag(z) returns the real and imaginary parts of z

abs(z) returns the magnitude of (possibly complex) z

angle(z) returns the angle of complex z in radians

round(z) returns z rounded to the nearest integer

Vector functions

x = linspace(0,1,100) returns a vector x of 100 numbers evenly-spaced from 0 to 1

x = [0:0.01:1] returns a vector starting at 0 and incrementing in 0.01 steps up to 1

x = zeros(3,5) creates a matrix of 3 rows and 5 columns filled with zeros

x = ones(3,5) like the above but filled with ones

[rows,cols] = size(m) returns the number of rows and columns in vector v

rows=length(v) if v is a vector, returns its length, i.e. the number of rows if it is a row vector

or the number of columns if it is a column vector.

max(v), min(v) returns the maximum or minimum value in vector v

Matrix element access commands

v(4) = v2(3) sets the 4
th

 element of v to the value contained in the 3
rd

 element of v2.

v([1 4]) = [5 10] sets the first element of vector v to 5 and the fourth to 10

v([1:4]) = [10:-1:7]; sets the first four elements of vector v to 10, 9, 8, and 7 respectively

v([5:7]) = []; makes v smaller by removing the elements at positions 5, 6, and 7

v(end) = 3; sets the last element of v to 3.

m([1:2],[end-1:end])=0; sets the four elements of matrix m that are in rows 1 and 2, and the second to

the last and final columns, to the value 0.

m(:,3) = [] makes m smaller by removing the 3
rd

 column

Testing

if(x==y) returns a 1 if scalar x equals scalar y, otherwise returns a 0 If x and y are

vectors, will compare respective elements and return a vector of 0's and 1's.

any, all If working with vectors, use if(any(x==y)) or if(all(x==y).

if (x>=y) Returns 1 if x is greater or equal to y. Similar for if (x<=y).

if (x~=y) Returns 1 if x is not equal to y.

Flow control

for i=1:10

 v[i] = i/2; fills vector v with 10 values from 1/2 to 5.

end

for i=1:2:10 skips over every other value in vector v

 disp(v[i])

end

Plotting/display commands

disp(m) displays vector m on the screen without assigning it to default variable ans

sprintf('Hi %g',n) if n is 4, returns the string 'Hi 4'. Usually used inside the disp command.

plot(x,y) plots the x vector against the y vector

 Page 13

plot(x,y,'r-') makes the plot red with straight lines. Can use g,b,k for green, blue, black.

For lines can use – (straight line), -- (dashed line), or . (puts dots at each xy

location but does not connect them into lines)

axis equal makes the xy aspect ratio of the plot equal, so that circles look like circles

and not ellipses

title('My title') Places a title at the top of a plot window

xlabel('x axis') Places the text 'x axis' below the horizontal axis of the plot

ylabel('y axis') Places the text 'y axis' to the left of the plot's vertical axis

