

If $\quad v(t)=155.6 \cos \left(2 \pi 60 t+85^{\circ}\right) V$
and $i(t)=565.7 \cos \left(2 \pi 60 t+15^{\circ}\right) m A$

Find

a) $V_{R M S}$ and $I_{R M S}$ phasors.

$$
\begin{aligned}
& \bar{V}_{R M S}=\frac{155.6}{\sqrt{2}} / 85^{\circ} V_{R M S}=110 \angle 85^{\circ} V_{R M S} \\
& I_{R M S}=\frac{565.7}{\sqrt{2}} / 15^{\circ} A_{R M S}=400 \angle 15^{\circ} \mathrm{m} A_{R M S}
\end{aligned}
$$

b) Complex power phasor (include units). Draw power triangle.

$$
\begin{aligned}
& \bar{S}=\bar{V}_{R m s} I_{R m s}^{*}=\left(110<85^{\circ}\right)\left(0.4\left(-15^{\circ}\right)=44\left(70^{\circ} \mathrm{VA}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& =15.1+j 41.3 \mathrm{VA}
\end{aligned}
$$

c) Apparent power (include units).

$$
S=|S|=44 \mathrm{VA}
$$

d) Real power (include units).

$$
P=\operatorname{Re}\{S\}=44 \cos \left(70^{\circ}\right)=15.1 \mathrm{~W} \text { (or, from triangle above) }
$$

e) Reactive power (include units).

$$
Q=\operatorname{Im}\{\bar{S}\}=44 \sin \left(70^{\circ}\right)=41.3 V A R \text { (or, from triangle above) }
$$

f) Power factor (include leading or lagging).

$$
p f=\cos \left(70^{\circ}\right)=0.342 \text { lagging since } \theta_{I}=15^{\circ}<\theta_{V}=85^{\circ}
$$

g) Load impedance in Ω.

$$
z_{\text {LOAD }}=\frac{\bar{I}_{\text {LOAD }}}{I_{\text {LOAD }}}=\frac{155.6 \angle 85^{\circ}}{565.7 \angle 15^{\circ}}=94+j 258 \Omega
$$

h) Model of load impedance as series RL or RC.

$$
\begin{aligned}
& R=94 \Omega \\
& L: j \omega L=j 2 \pi 60 L=j 258 \Rightarrow L=\frac{258}{2 \pi 60}=0.684
\end{aligned}
$$

i) Average power dissipated in load (include units)

$$
P_{\text {ave }}=P=150 / W \text { from part } d
$$

