
1.)



a) Find power factor of load as seen by the source. Include whether leading/lagging

$$Z_{L} = G + 4 / / - j2$$
  
=  $G + \frac{-j8}{4-j2}$   
=  $G \cdot g - j \cdot I \cdot G$   
So  $I_{s} = \frac{V_{s}}{Z_{L}} = \frac{30 V_{RMS}}{6.8 - j \cdot 6} = 4.29 \angle 13.2^{\circ} A_{RMS}$   
=  $\frac{100}{6.8 - j \cdot 6} = 4.29 \angle 13.2^{\circ} A_{RMS}$   
=  $\frac{100}{6.8 - j \cdot 6} = 4.29 \angle 13.2^{\circ} A_{RMS}$   
=  $\frac{100}{6.8 - j \cdot 6} = 4.29 \angle 13.2^{\circ} A_{RMS}$   
=  $\frac{100}{6.8 - j \cdot 6} = 4.29 \angle 13.2^{\circ} A_{RMS}$   
=  $\frac{100}{6.8 - j \cdot 6} = 4.29 \angle 13.2^{\circ} A_{RMS}$   
=  $\frac{100}{6.8 - j \cdot 6} = 4.29 \angle 13.2^{\circ} A_{RMS}$   
=  $\frac{100}{6.8 - j \cdot 6} = 4.29 \angle 13.2^{\circ} A_{RMS}$   
=  $\frac{100}{6.8 - j \cdot 6} = 4.29 \angle 13.2^{\circ} A_{RMS}$ 

b) Find apparent power delivered by source. Include units.

$$S = V_{RMS} \cdot I_{RMS}$$
  
= (30 V\_{RMS})(4.29 A\_{RMS})  
$$[= 129 VA]$$

c) Find average power delivered by source. Include units.

$$P_{ave} = S \cdot pf$$
  
= (129)(0.973)  
= 125W