1. Using your calculator (the one you will use on EE223 tests) find:
a) $2+\mathrm{j} 6$ in polar degree form

A Assuming TI -89. mode "exact/approx" to approx
Put mode "Complex format" to polar and "angle" to degrees $\quad 2+j 6 \Rightarrow 6.32<71.6^{\circ}$
b) $2 \angle \frac{\pi}{6}$ in rectangular form

Put mode "Complex format" to rectangular and "angle"
to radians $(2<\pi \div 6) \Rightarrow 1.73+i$
c) $\frac{5 \angle-4^{\circ}}{1+j 3}$ in polar degree form

Put mode "Complex format" to polar and "angle" to
degrees $\quad(5 \angle(-) 30) \div(1 \div j 3)=1.58 \angle \cdot-10.1^{\circ}$
d) $2 \angle 0.7$ in complex exponential form (easy!)
$2 e^{j 0.7}$ by inspection
2. Find $2 \cos (6 t)-3 \sin (6 t)$ in $A \cos (\omega t+\theta)$ form using trigonometry
$A \cos (\omega t)-B \sin (\omega t)=C \cos (\omega t+\theta)$
here, $A=2, B=3, \omega=6$
$C=\sqrt{A^{2}+B^{2}}=\sqrt{13} \approx 3.61$
$\theta=\tan ^{-1}(B / A)\left\{+180^{\circ}\right.$ if $\left.A<0\right\}=\tan ^{-1}(3 / 2)=56.3^{\circ}$
$3.61 \cos \left(6 t+56.3^{\circ}\right)$
or, Visualize
3. Do the above but use phasors (and calculator)

$$
\begin{aligned}
& 2 \cos (6 t)-3 \sin (6 t)=2 \cos (6 t)-3 \cos \left(6 t-90^{\circ}\right) \text { (functions of time) } \\
& \text { as phasors } \Rightarrow 2 \angle 0^{\circ}-3 \angle-90^{\circ} \quad \text { (complex\#'s) } \\
& \text { Calculator says this is }=3.61 \angle 56.3^{\circ} \\
& \text { so }=3.61 \cos \left(6 t+56.3^{\circ}\right) \quad \text { Same answer as above, } \\
& \text { LOTS easier! }
\end{aligned}
$$

