1. Find: $v_{\mathrm{cl} 1}\left(0^{+}\right) \quad v_{\mathrm{c} 2}\left(0^{+}\right)$
$v_{\mathrm{c} 1}{ }^{\prime}\left(0^{+}\right) \quad v_{\mathrm{c} 2}{ }^{\prime}\left(0^{+}\right)$
$v_{\mathrm{c} 1}(\infty) \quad v_{\mathrm{c} 2}(\infty)$
Hints: - All answers 0, 5, 10

- Get units right

2. Find: $\quad v_{c}\left(0^{+}\right) \quad i_{\mathrm{L}}\left(0^{+}\right)$ $v_{c}{ }^{\prime}\left(0^{+}\right) \quad i_{\mathrm{L}}{ }^{\prime}\left(0^{+}\right)$

Hints: • All answers are "nice" numbers (integers between -20 and 20)

- No zero answers

3. Find: $v_{R}\left(0^{+}\right)$
$v_{R}{ }^{\prime}\left(0^{+}\right)$
$\nu_{\mathrm{R}}(\infty)$
Hints: • to find $v_{\mathrm{R}}{ }^{\prime}$, think about how it relates to $i_{\mathrm{R}}{ }^{\prime}$ and how that relates to $i_{\mathrm{L}}{ }^{\prime}$

- make sure you evaluate the sources at $\mathrm{t}=0$ or $\mathrm{t}=\infty$
- All answers are integers between 0 and 40

