

$\dot{v} = \frac{1}{c} \int_{t_0}^{t} i(z) dz + v(t_0)$	Cap
$v = Li'$ $i = \frac{1}{L} \begin{pmatrix} t & v(z) dz + i(t_0) \\ t_0 \end{pmatrix}$	Ind

$v = \frac{1}{c} \begin{cases} ti(z) dz + v(t_0) \\ t_0 \end{cases}$	Cap	
$v = L i'$ $i = \frac{1}{L} \binom{t}{t_0} v(z) dz + i(t_0)$	Ind	

time regi	ens (to	(v(t.)	i(+)	1 = 12 (to i (=) dz + u(to)	
04+61	0	0.	+2	125 t2 dt + D = 12. \frac{1}{3} t3	7 ⁺ + 0
				= 4[+3-0] = 4+3V	
1442		4.13 = 4 4	1	12 (dz + 4 = 12 t] = 1	+4 = 12(t-1)+4
				= 12+ -8 V	
24+63	2	12.2-8	3-+	12 (= 12 + 16 = 12.	[32-27] + +16
				12[[3+-\frac{1}{2}]-[3.2-	1.4] 7+16
				12 [3+-12-4]+16	7
				36+-6+2-32	
t>3	3	36.3-6.9-32	D	12/0+22 = 22	
	1	~~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2(+) = =	$\frac{1}{2}$ CV ²	WL = 2Li2

$$\frac{9}{16}$$

$$\frac{9}{16}$$

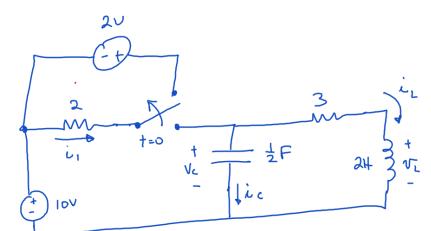
$$\frac{9}{16}$$

$$\frac{9}{124-8}, 0<46$$

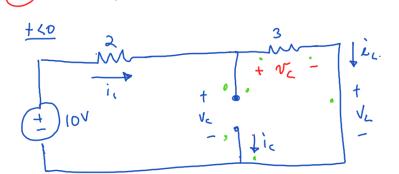
$$\frac{124-8}{364-64^2-32}, 2<463$$

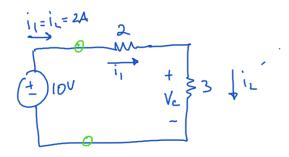
$$\frac{364-64^2-32}{22}, 4>3$$

(b) Find
$$w(2)$$
 $w_{c}(t) = \frac{1}{2} c_{1}$


$$= \frac{1}{2} \cdot c \cdot v^{2}(z)$$

$$= \frac{1}{2} \left(\frac{1}{12}\right) \frac{16^{2}}{10.75}$$


$$= \frac{16^{2}}{2} = 10.75$$


$$V_{c}^{2}(2) = 12(a) - 8 = 16$$

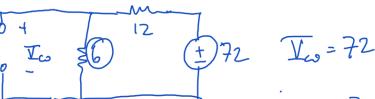
a) Find inic, in, ve, ve at both t=3 and t=0

$$|DV| = \frac{i_1 - i_L}{5} = \frac{10}{5} = 2$$

Find
$$Q_{c}(t=-2)$$

$$Q_{c} = C \cdot V$$

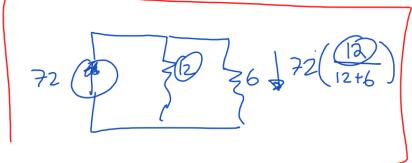
$$= (\frac{1}{2})(6)$$

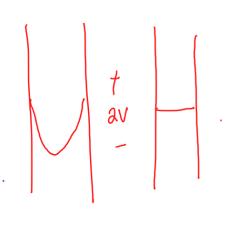

$$= 3 C$$

Find
$$W_{L}(t=0^{+})$$
 $W_{L} = \frac{1}{2}LL_{L}^{2}$
 $W_{L}(0^{+}) = \frac{1}{2}(2)L_{L}^{2}(0^{+})$
 $= \frac{1}{2}(2)L_{L}^{2}(0^{-})$
 $= \frac{1}{2}(2)\cdot 2^{2}$
 $= 4J$

Voltage continuity her a cop connot change instantaneously

Current throughour inductor connot change inst.

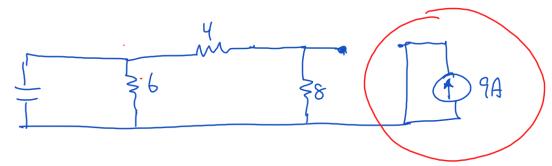

 $= 72 \cdot \left(\frac{1}{3}\right)$

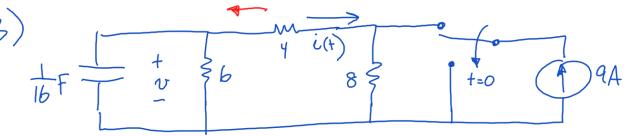

Vcap continuous
Ind continuous

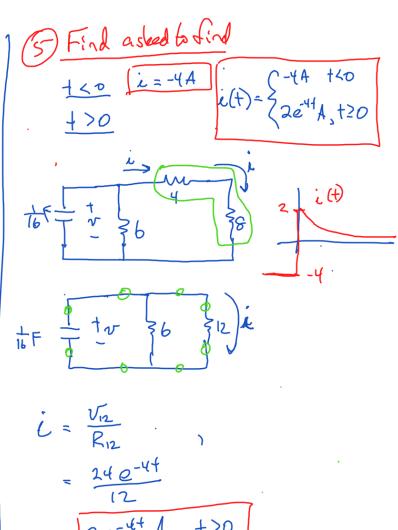
$$V_{c}(t=0^{+}) = 24V$$

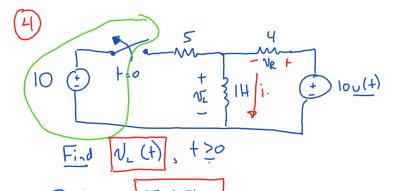
Voltage Diribers Corrent Dividers

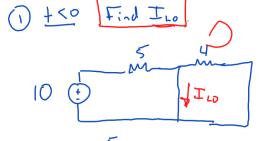
Problem 3/5




Voltage Dishers Corrent-Dividers


Problem 3/5


Find v(t) and i(t) for all time



$$\frac{1}{6}$$
 $\frac{1}{12}$ $\frac{6 \cdot 12}{6 + 12}$

$$IO \bigcirc I_{lo} = IO = IO = IO$$

$$\frac{1}{2} + \frac{1}{2} = \frac{1}{2}$$

$$R_{eq} = 45$$

$$T = RC = \frac{1}{R} = \frac{1}{4}$$

(3)
$$\frac{1}{1} = \infty$$
 $I_{L\infty} = \frac{10V}{40} = \frac{5}{2} A$

(4) $i_{L}(t) = I_{\infty} + (I_{0} - I_{\infty})e^{i_{L}}$

$$= \frac{5}{2} - \frac{1}{2}e^{-4t} A + \frac{120}{3}e^{i_{L}}$$

$$= \frac{5}{2} - \frac{1}{2}e^{-4t} A + \frac{120}{3}e^{i_{L}}$$

$$= \frac{10 - V_{R}}{10 - V_{R}} = 0$$

$$V_{L} = \frac{10 - V_{R}}{10 - V_{R}} = 0$$

$$V_{L} = \frac{10 - V_{R}}{10 - V_{R}} = 0$$

$$V_{L} = \frac{10 - V_{R}}{10 - V_{R}} = 0$$

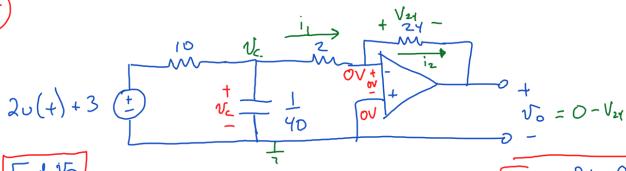
$$V_{L} = \frac{10 - V_{R}}{10 - V_{R}} = 0$$

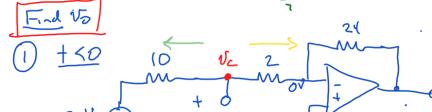
$$V_{L} = \frac{10 - V_{R}}{10 - V_{R}} = 0$$

$$V_{L} = \frac{10 - V_{R}}{10 - V_{R}} = 0$$

$$V_{L} = \frac{10 - V_{R}}{10 - V_{R}} = 0$$

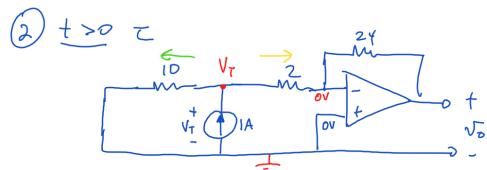
$$V_{L} = \frac{10 - V_{R}}{10 - V_{R}} = 0$$


$$V_{L} = \frac{10 - V_{R}}{10 - V_{R}} = 0$$


$$V_{L} = \frac{10 - V_{R}}{10 - V_{R}} = 0$$

$$V_{L} = \frac{10 - V_{R}}{10 - V_{R}} = 0$$

$$V_{L} = \frac{10 - V_{R}}{10 - V_{R}} = 0$$



$$\frac{V_{c}-3}{10} + \frac{V_{c}-0}{2} = 0$$

$$V_{c}-3 + 5V_{c} = 0$$

 $6V_{c} = 3$ $V_{o} = \frac{1}{2}$

Zero all indep. sources

$$\frac{V_{+}-0}{10} + \frac{V_{+}-0}{2} + -1 = 0$$

$$V_{T} + 5V_{T} = 10$$

$$6V_{T} = 10$$

$$3V_{T} = 5$$

$$V_{T} = \frac{5}{3}V$$

$$\frac{V_{t}-0}{I_{0}} + \frac{V_{t}-0}{2} + -1 = 0$$

$$Req = \frac{V_{T}}{T_{T}} = \frac{SI_{3}}{I} = \frac{5}{3}$$

$$V_{T} + 5V_{T} = 10$$

$$6V_{T} = 10$$

$$= \frac{1}{24} S$$

$$\frac{\sqrt[3]{0}-5}{\sqrt[3]{0}}+\sqrt[3]{0}=0$$

$$V_{\infty} = 5 + 5V_{\infty} = 0$$

$$6V_{\infty} = 5 \Rightarrow V_{\infty} = \frac{5}{6}$$

$$\frac{(4)}{V_{c}(t)} = V_{\infty} + (V_{0} - V_{\infty}) \bar{e}^{t/z}$$

$$= \frac{5}{6} - \frac{1}{3} e^{-24t} + \frac{1}{20}$$

$$(a) i_1 = \frac{\sqrt{c} - 0}{2} = \frac{\sqrt{c}}{2}$$

$$\frac{1}{\sqrt{100}} \frac{1}{\sqrt{100}} = -\sqrt{100} + \sqrt{100} = -\sqrt{100} = -\sqrt{100$$