

RC natural response

Trind DE in V if I To > i = C vc & Passive

$$-v + cv'R = 0$$

$$-v'Rc - v = 0$$

$$v' + cv' = 0$$

$$v(0) = 0$$

$$-v'R(-v=0)$$

$$v'+\frac{1}{RC}v=0$$

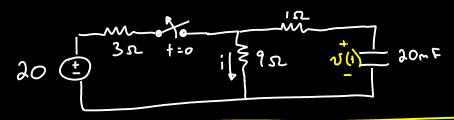
$$v(0)=\overline{V}_{0}$$

3 Solve DE • natural part S+ RC = 0 } Vnat (+) = ke Rc +

of solution:
$$V(t) = V e$$

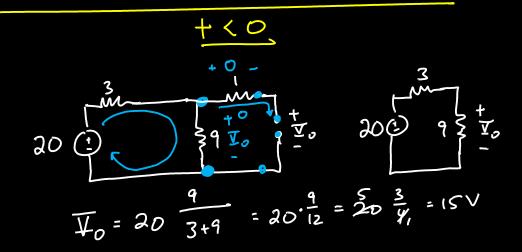
total solution: $V(t) = V e$
 $V(t) = V e$

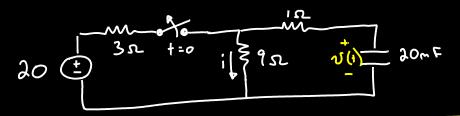
where $V(t) = V e$

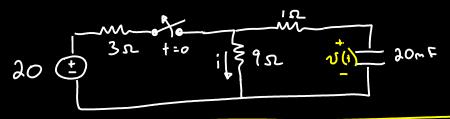

where $V(t) = V e$

where $V(t) = V e$
 $V(t) = V e$
 $V(t) = V e$
 $V(t) = V e$

where $V(t) = V e$
 $V(t)$


· very quick (but approx) understanding of time to discharge


· $v(t) = I_0 e^{-\frac{t}{2}}$ = e $\frac{1}{\sqrt{2}} \int_{0}^{100} \int_{0}^{100} = 90V$ $\frac{1}{\sqrt{2}} \int_{0}^{100} \int_{0}^{$ EX =(0.01) M = 10k when is it 99% discharged? $45 = 90e^{\frac{1}{1000}}$ $\frac{1}{2} = e^{-\frac{1}{10000}}$ When is it 99% discharged $0.9 = 90e^{-\frac{1}{1000}}$...


- (2) T
- 3 T.

- (5) L(t)
- 6 All time

Find i for all time

+ 0-

T_∞ = 0

20 0

- (5) L(t)
- 6 All time

(3)
$$\underline{\mathbf{I}}_{\infty} = v_{c}(t : \infty)$$
: $t = \infty$ = $\boxed{0}$ | $\boxed{15}$, $t \ge 0$

(4) $v_{c}(t) = \underline{\mathbf{I}}_{\infty} + (\underline{\mathbf{I}}_{0} - \underline{\mathbf{I}}_{\infty}) e^{-t/z} = \left(\boxed{15} e^{-5t} \ \mathbf{V}\right) + 20$

(4)
$$v_c(t) = \frac{\sqrt{20} + (\sqrt{20} - \sqrt{20})}{\sqrt{3} + \sqrt{20}}$$

(5) $L(t) = \frac{\sqrt{3} + \sqrt{20}}{\sqrt{15} + \sqrt{20}}$

$$\frac{1}{20} = \frac{150}{10} = \frac{150$$