

RC natural response

- RVL:

$$
\begin{aligned}
& v+v_{a}=0 \quad-\text { georetry } \\
& -v+i R_{i}=0 \quad R
\end{aligned}
$$

$$
v+\left(-v^{\prime} R=0 \quad C\right.
$$

$$
-v^{\prime} R C-v=0
$$

$$
v^{\prime}+\frac{1}{R C} v=0, v(0)=\bar{I}_{0}
$$

(2) Solve DE

- Sored part 0
- totclpart $v(A)=k e^{-\frac{1}{c c} t}$

Tod solution: $\begin{aligned} & V(0)=\bar{I}_{0}=k \\ & V(t)=\bar{X}_{0}\end{aligned} e^{-\frac{1}{k C}}+=\bar{I}_{0} e^{-\frac{t}{\tau}}$ wher $\tau=R C \quad \begin{aligned} & R C \text { "time constent" } \begin{array}{l}\text { unts seconds }\end{array} \quad \text { Plug-n-chug! }\end{aligned}$
τ

- very quich (but approy) understading of time to discharge

$$
\text { - v(t) }=I_{0} e^{-\frac{t}{\tau}}, \tau=R C
$$

E

$$
\begin{aligned}
& v_{c}(0)=90 \mathrm{~V} \\
& v_{c}(t)=90 e^{-\frac{t}{\tau}}, \tau=(1 \mu)(100)=100 \mu \mathrm{~s}
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{100 \mu} & =\frac{1}{100} \cdot \frac{1}{\mu} \\
& =(0.01) M \\
& =10 \mathrm{k}
\end{aligned}
$$

First Order Problem

Find i for all time
(1) $I_{0}=v_{c}(t \leq 0): t<0=15 v$
(2) て
(3) I_{∞}
(4) $v(t)=\underline{\nabla}_{\infty}+\left(\bar{X}_{0}-\bar{I}_{\infty}\right) e^{-t / \tau}$

$$
\bar{F}_{0}=20 \frac{9}{3+9}=20 \cdot \frac{9}{12}=20 \frac{3}{Y_{1}}=15 \mathrm{~V}
$$

(5) $i(t)$
(6) All time

First Order Problem

Find i for all time
(1) $\bar{I}_{0}=v_{c}(t \leq 0): t<0=15 \mathrm{~V}$
(a) $\tau: 0<+<\infty=\frac{1}{5} s$
(3) I_{∞}
(4) $v(t)=\underline{V}_{\infty}+\left(\bar{X}_{0}-\bar{I}_{\infty}\right) e^{-+/ \tau}$
(5) $i(t)$
(6) All time

$$
\begin{aligned}
& R_{\text {eq }}=1+9=10 \Omega \\
& C=20 \mathrm{mF} \\
& \tau=R C \\
& =(10)(20 \mathrm{~m}) \\
& =200 \mathrm{~m} \\
& =\frac{1}{5} \mathrm{~s}
\end{aligned}
$$

First Order Problem

Find i for all time
(1) $I_{0}=v_{c}(t \leq 0): t<0=115 \mathrm{~V}$
(2) $\tau: \underline{0<t<\infty}=\frac{1}{5} s$

(3) $I_{\infty}=v_{c}(t=\infty): t=\infty=$
no switches no ep, inductors no $u(t)$
(4) $v(t)=\nabla_{\infty}+\left(\bar{X}_{0}-\bar{I}_{\infty}\right) e^{-+/ \tau}$
(5) $i(t)$
(6) All time

First Order Problem

Find i for all time
(1) $I_{0}=v_{c}(t \leq 0): t<0=15 \mathrm{~V}$
(2) $\tau: 0<+\angle \infty=\frac{1}{5} s$
(3) $I_{\infty}=v_{c}(t=\infty): t=\infty=0, t<0$
(4) $v_{c}(t)=\frac{\nabla_{\infty}+\left(\bar{I}_{0}-\bar{I}_{\infty}\right) e^{-+1 \tau}}{15 e^{-5 t} V}+$
(5) $i(t)= \begin{cases}\frac{5}{3} A & t<0 \\ 1.5 e^{-5 t} A, & t \geq 0\end{cases}$

